Difference between revisions of "Constraint Grammar"
Popcorndude (talk | contribs) (Add CG syntax cheatsheet) |
|||
Line 12: | Line 12: | ||
::Apertium equivalent: <code>^word<n><pl>$</code> |
::Apertium equivalent: <code>^word<n><pl>$</code> |
||
* ''wordform'' — a [[surface form]] of a word. |
* ''wordform'' — a [[surface form]] of a word. |
||
==Basic Rule Format== |
|||
===Sets=== |
|||
Sets are defined like this: |
|||
LIST verb = vblex vbser ; # matches <vblex> or <vbser> |
|||
LIST Nsg = (n sg) ; # matches <n><sg> |
|||
LIST to = "to" ; # matches the lemma "to" |
|||
LIST case = (n nom) (n acc) ; # matches <n><nom> or <n><acc> |
|||
===Rules=== |
|||
Rules look like this: |
|||
SELECT [FORM] [CONTEXT] ; |
|||
REMOVE [FORM] [CONTEXT] ; |
|||
Where FORM is a lemma, set of tags, or the name of a set and CONTEXT is a set of patterns. |
|||
===Context Patterns=== |
|||
Context patterns look like this: |
|||
([LOCATION][MODIFIERS] [PATTERN]) |
|||
PATTERN can be a lemma, set of tags, or the name of a set. |
|||
{| |
|||
| Symbol || Meaning |
|||
|- |
|||
| 0 || The current word |
|||
|- |
|||
| 1 || The word following the current word |
|||
|- |
|||
| -1 || The word preceding the current word |
|||
|- |
|||
| 2 || The word 2 words after the current word |
|||
|- |
|||
| C || Every reading this position must match the pattern (normally only 1 has to) |
|||
|- |
|||
| * || In that position or further in that direction |
|||
|} |
|||
(0 (v)) # the current word must have a verb reading |
|||
(-1 "to") # the previous word must be "to" |
|||
(2C (n)) # every reading of the word after the next one must be a noun |
|||
(1* (pr)) # the current word has a preposition after it |
|||
(-2* (pron)) # there is a pronoun at least two words before the current word |
|||
==Note on parenthesis== |
==Note on parenthesis== |
Revision as of 15:09, 5 March 2019
Constraint Grammar is a tool that can be used to POS-tag ambiguous text. There are free constraint grammars developed outside the Apertium project for: Norwegian (the Oslo-Bergen tagger), Sámi languages (from Giellatekno), Faroese (also from Giellatekno), Finnish (by Fred Karlsson).
Terminology
- See also: Apertium stream format
- cohort — a surface form of a word, along with its analyses (possible lexical units), an ambiguous lexical unit.
- Apertium equivalent:
^words/word<n><pl>/word<vblex><pres><p3><sg>$
- Apertium equivalent:
- baseform — the lemma of a word.
- reading — a single analysis of a word.
- Apertium equivalent:
^word<n><pl>$
- Apertium equivalent:
- wordform — a surface form of a word.
Basic Rule Format
Sets
Sets are defined like this:
LIST verb = vblex vbser ; # matches <vblex> or <vbser> LIST Nsg = (n sg) ; # matches <n><sg> LIST to = "to" ; # matches the lemma "to" LIST case = (n nom) (n acc) ; # matches <n><nom> or <n><acc>
Rules
Rules look like this:
SELECT [FORM] [CONTEXT] ; REMOVE [FORM] [CONTEXT] ;
Where FORM is a lemma, set of tags, or the name of a set and CONTEXT is a set of patterns.
Context Patterns
Context patterns look like this:
([LOCATION][MODIFIERS] [PATTERN])
PATTERN can be a lemma, set of tags, or the name of a set.
Symbol | Meaning |
0 | The current word |
1 | The word following the current word |
-1 | The word preceding the current word |
2 | The word 2 words after the current word |
C | Every reading this position must match the pattern (normally only 1 has to) |
* | In that position or further in that direction |
(0 (v)) # the current word must have a verb reading (-1 "to") # the previous word must be "to" (2C (n)) # every reading of the word after the next one must be a noun (1* (pr)) # the current word has a preposition after it (-2* (pron)) # there is a pronoun at least two words before the current word
Note on parenthesis
The use of parentheses to distinguish between tags and lists/sets seems to be the main confusing point for people learning CG. If we have the morphological tags tag1
and tag2
, then we can have rules like this:
LIST set1 = tag1 ; LIST set2 = (tag1 tag2) ; # matches a word with both tag1 and tag2 LIST set3 = tag1 tag2 ; # matches a word with tag1 or tag2 LIST word = "hello" ; SELECT:1a (tag1) (1 word) ; SELECT:1b set1 (1 word) ; # equivalent to 1a SELECT:2a (tag1 tag2) (1 word) ; SELECT:2b set2 (1 word) ; # equivalent to 2a SELECT:3a tag1 (1 word) ; SELECT:3b tag2 (1 word) ; SELECT:3c set3 (1 word) ; # equivalent to 3a and 3b combined SELECT:1c set1 (1 ("hello")) ; # equivalent to 1a (or 1b)
Languages using CG in Apertium
and many others. The following languages currently (2014-06-27) have CG's of over 100 rules:
- 3888 apertium-nno (based on the Oslo-Bergen tagger)
- 3649 apertium-sme (from Giellatekno)
- 2275 apertium-nob (based on the Oslo-Bergen tagger)
- 1552 apertium-est
- 1524 apertium-fin (based on Fred Karlsson's)
- 850 apertium-dan
- 594 apertium-gle
- 453 apertium-fao (from Giellatekno)
- 298 apertium-spa
- 279 apertium-bre
- 255 apertium-cat
- 205 apertium-hbs
- 190 apertium-isl
- 131 apertium-cym
- 76 apertium-tur
- 127 apertium-eng
- 118 apertium-mkd
- 150 apertium-kaz
When is CG needed?
Currently some of the CG rules written in the above language pairs may be written as forbid rules in the TSX format used by apertium-tagger. If the rules for your language pair can be written in the .tsx format, you can go for an easier design without a CG module in that language pair.
Editor support
- CG-3 IDE – the official vislcg3 CG IDE
- Gedit syntax highlighting (also for any other editor that uses gtksourceview)
- Emacs emacs mode for editing and testing CG grammars (highlighting + IDE-like features)
See also
- Apertium and Constraint Grammar -- installation and use
- Introduksjon til føringsgrammatikk -- a HOWTO, in Norwegian bokmål
- Rule-based finite-state disambiguation -- GsoC 2012 project by User:Krvoje, a "CG light" (or, a more apertiummy CG) with rules in XML compiled to an FST
- Constraint Grammar/Speed – some tips on speeding up your rules
- Constraint Grammar/Optimisation – ideas on how to optimise the vislcg3 engine
External links
- VISL CG-3 Development Information + documentation and downloads
- Basic Tutorial for VISL CG-3
- cg-mode for emacs, gives basic syntax highlighting and indentation
- Kevin Donnelly's CG tutorial
- Hulden M, Francom J (2012) Boosting Statistical Tagger Accuracy with Simple Rule-Based Grammars, Proc. LREC 2012, p. 2114-2117 shows how 20 hours (very little time!) writing disambiguation rules gives substantial improvements. Some of the rules shown may also be implemented in the TSX format used by apertium-tagger.