Difference between revisions of "Ideas for Google Summer of Code"
(→List) |
|||
(340 intermediate revisions by 24 users not shown) | |||
Line 1: | Line 1: | ||
{{TOCD}} |
{{TOCD}} |
||
This is the ideas page for [[Google Summer of Code]], here you can find ideas on interesting projects that would make Apertium more useful for people and improve or expand our functionality. |
This is the ideas page for [[Google Summer of Code]], here you can find ideas on interesting projects that would make Apertium more useful for people and improve or expand our functionality. |
||
'''Current Apertium contributors''': If you have an idea please add it below, if you think you could mentor someone in a particular area, add your name to "Interested mentors" using <code><nowiki>~~~</nowiki></code>. |
|||
The page is intended as an overview of the kind of projects we have in mind. If one of them particularly piques your interest, please come and discuss with us on <code>#apertium</code> on <code>irc.freenode.net</code>, mail the [[Contact|mailing list]], or draw attention to yourself in some other way. |
|||
'''Prospective GSoC contributors''': The page is intended as an overview of the kind of projects we have in mind. If one of them particularly piques your interest, please come and discuss with us on <code>#apertium</code> on <code>irc.oftc.net</code> ([[IRC|more on IRC]]), mail the [[Contact|mailing list]], or draw attention to yourself in some other way. |
|||
Note that, if you have an idea that isn't mentioned here, we would be very interested to hear about it. |
|||
Note that if you have an idea that isn't mentioned here, we would be very interested to hear about it. |
|||
Here are some more things you could look at: |
Here are some more things you could look at: |
||
Line 13: | Line 15: | ||
* Resources that could be converted or expanded in the [[incubator]]. Consider doing or improving a language pair (see [[incubator]], [[nursery]] and [[staging]] for pairs that need work) |
* Resources that could be converted or expanded in the [[incubator]]. Consider doing or improving a language pair (see [[incubator]], [[nursery]] and [[staging]] for pairs that need work) |
||
* Unhammer's [[User:Unhammer/wishlist|wishlist]] |
* Unhammer's [[User:Unhammer/wishlist|wishlist]] |
||
<!--* The open issues [https://github.com/search?q=org%3Aapertium&state=open&type=Issues on Github] - especially the [https://github.com/search?q=org%3Aapertium+label%3A%22good+first+issue%22&state=open&type=Issues Good First Issues]. --> |
|||
* The [http://bugs.apertium.org/cgi-bin/bugzilla/buglist.cgi?query_format=advanced&short_desc_type=allwordssubstr&short_desc=&long_desc_type=substring&long_desc=&bug_file_loc_type=allwordssubstr&bug_file_loc=&bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&emailassigned_to1=1&emailtype1=substring&email1=&emailassigned_to2=1&emailreporter2=1&emailcc2=1&emailtype2=substring&email2=&bugidtype=include&bug_id=&votes=&chfieldfrom=&chfieldto=Now&chfieldvalue=&cmdtype=doit&order=Reuse+same+sort+as+last+time&field0-0-0=noop&type0-0-0=noop&value0-0-0= open bugs] page on Bugzilla |
|||
__TOC__ |
|||
<!-- |
|||
See the list sorted by: {{comment|Do we need this? - [[User:Francis Tyers|Francis Tyers]]}} |
|||
If you're a prospective GSoC contributor trying to propose a topic, the recommended way is to request a wiki account and then go to <pre>http://wiki.apertium.org/wiki/User:[[your username]]/GSoC2023Proposal</pre> and click the "create" button near the top of the page. It's also nice to include <code><nowiki>[[</nowiki>[[:Category:GSoC_2023_student_proposals|Category:GSoC_2023_student_proposals]]<nowiki>]]</nowiki></code> to help organize submitted proposals. |
|||
* [[/Difficulty|difficulty level]], |
|||
* [[/Thematic|theme]] |
|||
--> |
|||
==List== |
|||
== Language Data == |
|||
{|class="wikitable" |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Visual interface to write structural transfer rules''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| C++, scripting languages, GUI design || Write a graphical user interface to write structural transfer rules (one that reads in (a subset of) the current XML-based language, allows for a graphical, intuitive editing of the rules, and writes compilable .t1x, .t2x or .t3x files) || Apertium structural transfer rules are currently encoded in XML-based formats. These are very overt and clear, but clumsy and may be hard to write. The idea is to design a visual programming language of the style of like [http://scratch.mit.edu/ Scratch], where jigsaw-puzzle-style pieces corresponding to statements and control structures fit only if the syntax is right. |
|||
|| [[User:mlforcada| Mikel Forcada]], mentors wanted! |
|||
|- |
|||
!style="background-color: #efcdcd"|1. Hard ||colspan=2| || (no additional information available yet) |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Adopt a language pair''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
|XML, a scripting language (Python, Perl), good knowledge of the language pair adopted. || Take on an orphaned language pair, and bring it up to release quality results. What this quality will be will depend on the language pair adopted, and will need to be discussed with the prospective mentor. This will involve writing linguistic data (including morphological rules and transfer rules — which are specified in a declarative language — and possibly [[Constraint Grammar]] rules if that is relevant) || Apertium has a few pairs of languages (e.g. mt-he, ga-gd, ur-hi, pl-cs, sh-ru, etc...) that are orphaned, they don't have active maintainers. A lot of these pairs have a lot of work already put in, just need another few months to get them to release quality. See also [[Incubator]] || [[User:Francis Tyers|Francis Tyers]], [[User:Jimregan|Jimregan]], [[User:Kevin Scannell|Kevin Scannell]], [[User:Trondtr|Trondtr]], [[User:Unhammer|Unhammer]], [[User:Darthxaher|Darthxaher]], [[User:Firespeaker|Firespeaker]], [[User:Hectoralos|Hectoralos]], [[User:Krvoje|Hrvoje Peradin]] |
|||
|- |
|||
!style="background-color: #cdcdef"| 3. Entry level ||colspan=2| || [[/Adopt a language pair|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Discontiguous multiwords''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
|C++, Knowledge of FSTs || The task will be to develop, or adapt a module to deal with these kind of contiguous multiword expressions, for example, taking 'liggja ekki fyrir' and reordering it as 'liggja# fyrir ekki'. || In many languages, such as English, Norwegian and Icelandic, there are discontiguous multiwords, e.g. phrasal verbs, that we cannot easily support. For example 'liggja ekki fyrir' in Icelandic should be translated in English as 'to be not clear', but we cannot have 'liggja fyrir' as a traditional multiword because of the extra 'adverb', or it could even be a whole NP. || [[User:Francis Tyers|Francis Tyers]] |
|||
|- |
|||
!style="background-color: #cdefcd"|2. Medium ||colspan=2| || [[/Discontiguous multiwords|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Rule-based finite-state disambiguation''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| XML, C++ or Java || Implement a disambiguation framework for Apertium that can be expressed as a finite-state transducer. It might be a good idea to express this as constraint rules, in a novel XML-based file format. It would be a good idea to look at LanguageTool, and IceParser and Apertium's own [[apertium-lex-tools]] to get ideas on how this might be accomplished. || Currently Apertium only has a bigram/trigram part-of-speech tagger. For most languages, bigram/trigram POS disambiguation really doesn't work, especially when you want to disambiguate morphology (e.g. number, case) along with part-of-speech. So far we've been using [[constraint grammar]] for some of these languages. But although Constraint Grammar is great and powerful, it is also pretty slow. || [[User:Francis Tyers|Francis Tyers]] (C++), [[User:Jacob Nordfalk|Jacob Nordfalk]] (Java) |
|||
|- |
|||
!style="background-color: #efcdcd"|1. Hard ||colspan=2| || [[/Rule-based finite-state disambiguation|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Flag diacritics in lttoolbox''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| C++ or Java, XML, Knowledge of FSTs || Adapt [[lttoolbox]] to elegantly use flag diacritics. Flag diacritics are a way of avoiding transducer size blow-up by discarding impossible paths at runtime as opposed to compile time. |
|||
Can you read or write a language other than English (and we do mean any language)? If so, you can help with one of these and we can help you figure out the technical parts. |
|||
Some work have already been done, see [[Flag diacritics]]. |
|||
|| This will involve designing some changes to our XML dictionary format (see [[lttoolbox]], and implementing the associated changes in the FST compiling processing code. The reason behind this is that many languages have prefix inflection, and we cannot currently deal with this without either making paradigms useless, or overanalysing (e.g. returning analyses where none exist). Flag diacritics (or constraints) would allow us to restrict overanalysis without blowing up the size of our dictionaries. || [[User:Francis Tyers|Francis Tyers]] (C++), [[User:Jacob Nordfalk|Jacob Nordfalk]] (Java) |
|||
|- |
|||
!style="background-color: #efcdcd"|1. Hard ||colspan=2| || [[/Flag diacritics in lttoolbox|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Complex multiwords''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| Java or C++, XML, Knowledge of FSTs || Write a bidirectional module for specifying complex multiword units, for example ''dirección general'' and ''zračna luka''. See ''[[Multiwords]]'' for more information. || Although in the Romance languages it is not a big problem, as soon as you start to get to languages with cases (e.g. Serbo-Croatian, Slovenian, German, etc.) the problem comes that you can't define a multiword of <code>adj nom</code> because the adjective has a lot of inflection. || [[User:Jimregan|Jimregan]] |
|||
|- |
|||
!style="background-color: #efcdcd"|1. Hard ||colspan=2| || [[/Complex multiwords|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Optimise the VM for transfer''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| Python, C++, XML, code optimisation, JIT techniques, etc. || The current VM for the transfer architecture of Apertium is up to five times slower than the XML tree-walking implementation. The job of this task is to optimise the C++ code to make it faster than XML tree-walking. || The rationale behind this is that XML tree-walking is quite slow and CPU intensive. In modern (3 or more stage) pairs, transfer takes up most of the CPU. There are other options, like [[Bytecode for transfer]], but we would like something that does not require external libraries and is adapted specifically for Apertium. || [[User:Sortiz|Sortiz]] |
|||
|- |
|||
!style="background-color: #cdefcd"|2. Medium ||colspan=2| || [[/Optimise the VM for transfer|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Accent and diacritic restoration''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| C, C++, XML, familiarity with linguistic issues, knowledge of FSTs preferable || Create an optional module to restore diacritics and accents on input text, and integrate it into the Apertium pipeline. || Many languages use diacritics and accents in normal writing, and Apertium is designed to use these, however in some places, especially for example. instant messaging, irc, searching in the web etc. these are often not used or untyped. This causes problems as for the engine, ''traduccion'' is not the same as ''traducción''. || [[User:Kevin Scannell|Kevin Scannell]], [[User:Trondtr|Trondtr]] |
|||
|- |
|||
!style="background-color: #cdcdef"|3. Entry level ||colspan=2| || [[/Accent and diacritic restoration|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Geriaoueg vocabulary assistant''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| PHP, C++, XML || Extend [[Geriaoueg]] so that it works more reliably with broken HTML, with any given language pair (e.g. support for both [[lttoolbox]] and [[HFST]]. || [[Geriaoueg]] is a program that provides "popup" vocabulary assistance, something like BBC Vocab or Lingro. Currently it only works with Breton--French, Welsh--English and Spanish--Breton. This task would be to develop it to work with any language in our SVN and fix problems with processing and displaying non-standard HTML. || [[User:Francis Tyers|Francis Tyers]] |
|||
|- |
|||
!style="background-color: #cdcdef"|3. Entry level ||colspan=2| || [[/Geriaoueg vocabulary assistant|read more...]] |
|||
{{IdeaSummary |
|||
|- |
|||
| name = Develop a morphological analyser |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Closer integration with HFST''' |
|||
| difficulty = easy |
|||
|- |
|||
| size = either |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
| skills = XML or HFST or lexd |
|||
|- |
|||
| description = Write a morphological analyser and generator for a language that does not yet have one |
|||
| C++, Autotools, XML || This is a set of subtasks to make it easier for Apertium developers to use the Helsinki Finite-State Toolkit (HFST). It will involve: Adjusting the HFST build process to allow for an Apertium-tailored install. Making an XML format for [[lexc]] designed with machine translation in mind. Adjusting the tokenisation code in <code>hfst-proc</code>. Making [[lttoolbox]] a possible backend for HFST. || HFST is a great toolkit for working with morphological transducers, but it is pretty difficult to install, and also not very well integrated with Apertium / doesn't really follow the Apertium way of doing things. We'd like to make it more closely integrated. || [[User:Francis Tyers|Francis Tyers]], [[User:TommiPirinen|Tommi A Pirinen]] |
|||
| rationale = A key part of an Apertium machine translation system is a morphological analyser and generator. The objective of this task is to create an analyser for a language that does not yet have one. |
|||
|- |
|||
| mentors = [[User:Francis Tyers|Francis Tyers]], [[User:Firespeaker|Jonathan Washington]], [[User: Sevilay Bayatlı|Sevilay Bayatlı]], Hossep, nlhowell, [[User:Popcorndude]] |
|||
!style="background-color: #cdefcd"|2. Medium ||colspan=2| || [[/Closer integration with HFST|read more...]] |
|||
| more = /Morphological analyser |
|||
|- |
|||
}} |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Corpus-based lexicalised feature transfer''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| C++, NLP || Make a module that sits somewhere in the Apertium pipeline (somewhere after the lexical selection and before morphological generation) that sets features (eg. tags) based on a model generated from a corpus. || Let's get down to brass tacks, sometimes we get really inadequate translations even though you'd never hear stuff like that. One of those things is when we output something as definite when it is never used as definite. One way of dealing with this is a lot of rules and lists in transfer, but those are hard to do. So, how about looking at a corpus for information about some features like definiteness, aspect, evidentiality, impersonal/reflexive pronoun use in Romance languages etc. || [[User:Francis Tyers|Francis Tyers]], [[User:Jimregan|Jimregan]] |
|||
|- |
|||
!style="background-color: #efcdcd"|1. Hard ||colspan=2| || [[/Corpus-based lexicalised feature transfer|read more...]] |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''''lint'' for Apertium''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| Python, C++, XML, autotools || Make a program which tests Apertium data files for suspicious or unrecommended constructs (likely to be bugs). || Somtimes when several people are working on the same code, things can get repeated, or beginners can make unrecommended changes. A lint tester would help people write standard code for dictionaries and transfer files. || [[User:Francis Tyers|Francis Tyers]] |
|||
|- |
|||
!style="background-color: #cdefcd"|2. Medium ||colspan=2| || [[/lint for Apertium|read more...]] |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Prototype recursive transfer implementations''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| Python, XML, linguistics || The purpose of this task would be to create a prototype module to replace the apertium-transfer module(s) which will parse and allow transfer operations on an input. || Currently we have a problem with very distantly related languages that have long-distance constituent reordering, because we can only do finite-state chunking. || [[User:Francis Tyers|Francis Tyers]], [[User:Sortiz|Sortiz]] |
|||
|- |
|||
!style="background-color: #efcdcd"|1. Hard ||colspan=2| || [[/Prototype recursive transfer implementations|read more...]] |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Monolingual and bilingual data decoupling''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| Python, XML, linguistics, autotools || Develop a method (scripts) to allow monolingual and bilingual data in Apertium to be decoupled, leaving each language pair with only the necessary bilingual data. || At the moment, Apertium has a separate module for each language pair. Each pair is self-contained, with a copy of both the monolingual data (e.g. POS tagger probabilities and monolingual dictionaries) and bilingual data (e.g. transfer rules and dictionaries). The method should be tested with <code>es-ca</code>, <code>es-pt</code> and <code>pt-ca</code>. After decoupling, all pairs should pass testvoc. || [[User:Francis Tyers|Francis Tyers]], [[User:Firespeaker|Firespeaker]] |
|||
|- |
|||
!style="background-color: #efcdcd"|1. Hard ||colspan=2| || [[/Monolingual and bilingual data decoupling|read more...]] |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Apertium assimilation evaluation toolkit''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| A scripting language || Starting from files containing sentences in the source language and reference translations, generate tests for human evaluation consisting of: (1) (optionally) the source sentence, (2) (optionally) the machine-translated version of the source sentences and (3) a reference translation of the sentence in which one or more content words have been deleted. The idea is to measure how the ability of human subjects to fill in the holes improves when the source or a machine translation of it are presented. The task involves also generating a program that computes the success as a function of the information presented to the user, and utilities to make the whole process automatic given an Apertium language pair. || Many Apertium language pairs are designed for assimilation (gisting) purposes. The evaluation described would measure how helpful they are in the task. || [[User:Francis Tyers|Francis Tyers]], [[User:mlforcada| Mikel Forcada]] |
|||
|- |
|||
!style="background-color: #cdcdef"| 3. Entry level ||colspan=2| || [[/Apertium assimilation evaluation toolkit|read more...]] |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Improvements in lexical-selection module''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| C++, python || Implement a number of improvements to the [[lexical selection module]], particularly involving the rule-learning scripts. || The lexical selection module in Apertium is currently a prototype. There are many optimisations that could be made to make it faster and more efficient. There are a number of scripts which can be used for learning lexical-selection rules, but the scripts are not particularly well written. Part of the task will be to rewrite the scripts taking into account all possible corner cases. || [[User:Francis Tyers|Francis Tyers]] |
|||
|- |
|||
!style="background-color: #cdefcd"|2. Medium ||colspan=2| || [[/Improvements in lexical-selection module|read more...]] |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Plain-text formats for Apertium data''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| XSLT, XML, flex, bison || Apertium data is currently largely encoded in XML-based formats. These are very overt and clear, but clumsy and hard to write. The idea is to make a plain-text format (based on the old [http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/download/3355/1843 MorphTrans] format) and write converters to/from the existing XML based format. || Many of our developers like the XML-based transfer and dictionary formats, but there are always some who would prefer a more texty format. This idea would make them happier. Happy developers write more code! || [[User:Mlforcada|Mlforcada]] |
|||
|- |
|||
!style="background-color: #cdefcd"|2. Medium ||colspan=2| || [[/Plain-text formats for Apertium data|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Sliding-window part-of-speech tagger''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| XML, C++ || The idea is to implement the [http://en.wikipedia.org/wiki/Sliding_window_based_part-of-speech_tagging unsupervised sliding-window part-of-speech tagger] as a drop-in replacement for the current hidden-Markov-model tagger. It should have support for unknown words, and also for "forbid" descriptions (not described in the paper cited in the Wikipedia page). || Currently Apertium only has a bigram/trigram HMM-based part-of-speech tagger. For most languages, bigram/trigram POS disambiguation with unsupervised training doesn't give very good performance. This is even more noticeable when you want to disambiguate morphology (e.g. number, case) along with part-of-speech. So far we've been using [[constraint grammar]] for some of these languages. But although Constraint Grammar is great and powerful, it is also pretty slow. || [[User:Mlforcada|Mlforcada]] |
|||
|- |
|||
!style="background-color: #efcdcd"|1. Hard ||colspan=2| || [[/Sliding-window part-of-speech tagger|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Improved bilingual dictionary induction''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| Python, XML || Write a set of scripts that can generate valid and consistent Apertium bilingual dictionary entries from a word-aligned parallel corpus. This will involve making a basic templating system. The scripts should ideally be able to incorporate quality measures to determine how reliable the translations extracted from the corpus are. || There are some tools to make bilingual dictionaries from parallel corpora (such as [[retratos]]) but they don't take into account that words in different languages can require different entries in the bilingual dictionary depending on their morphological characteristics. This means that although finding the translations is automatic, most generated entries have to be checked, which can greatly increase the amount of time it takes to make a new translation system. || [[User:Francis Tyers|Francis Tyers]] |
|||
|- |
|||
!style="background-color: #cdcdef"|3. Entry level ||colspan=2| || [[/Improved bilingual dictionary induction|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Template-based bilingual dictionary''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| XML, C++, python || Design a format similar to [[bidix]] (declarative XML establishing language 1 <> language 2 correspondences) that allows the use of templates, as well as the back-end to process it (i.e., it should compile into an FST). It should deal with [[/Discontiguous multiwords|discontiguous multiwords]] and [[/Complex multiwords|complex multiwords]], allowing them to be easily translated, and should provide some mechanism (some sort of ranking) to deal with multiple matching sets of templates for a given translation (similar to [[CG]]). It should essentially allow one to bypass [[transfer]] rules and [[constraint grammar|disambiguation]] and produce similar (if not better) accuracy in translation. || A templatic bidix forces the designer of a language pair to be more explicit, and also consolidates pair development. Furthermore, there are several types of phenomenon such a system could deal with that are currently highly problematic. || [[User:Firespeaker|Firespeaker]] [[User:Francis Tyers|Francis Tyers]] |
|||
|- |
|||
!style="background-color: #efcdcd"|1. Hard ||colspan=2| || [[/Template-based bilingual dictionary|read more...]] |
|||
|- |
|||
|- |
|||
!colspan=4 style="background-color: #cdcdcd"|'''Interface for creating tagged corpora''' |
|||
|- |
|||
|align=center| '''How ?'''<br/><small>(required skills)</small> ||align=center| '''What ?'''<br/><small>(description)</small> ||align=center| '''Why ?'''<br/><small>(rationale)</small> ||align=center| '''Who ?'''<br/><small>(mentors)</small> |
|||
|- |
|||
| Python, XML || Write an interface, possibly in Python and Gtk+, to allow a user to tag a corpus by hand. It should include support for applying hand-written rules and for training and running the tagger on a given test set. || There is a need in Apertium for both released pairs and new ones: better part-of-speech taggers. Using supervised training has always given a performance boost. But coming across free tagged corpora, let alone free tagged corpora in Apertium format is very hard. There is only one corpus that we know of in Apertium format. || [[User:Mlforcada|Mlforcada]] |
|||
|- |
|||
!style="background-color: #cdcdef"|3. Entry level ||colspan=2| || [[/Interface for creating tagged corpora|read more...]] |
|||
|- |
|||
|} |
|||
{{IdeaSummary |
|||
<!--;Notes |
|||
| name = apertium-separable language-pair integration |
|||
| difficulty = Medium |
|||
| size = small |
|||
| skills = XML, a scripting language (Python, Perl), some knowledge of linguistics and/or at least one relevant natural language |
|||
| description = Choose a language you can identify as having a good number of "multiwords" in the lexicon. Modify all language pairs in Apertium to use the [[Apertium-separable]] module to process the multiwords, and clean up the dictionaries accordingly. |
|||
| rationale = Apertium-separable is a newish module to process lexical items with discontinguous dependencies, an area where Apertium has traditionally fallen short. Despite all the module has to offer, many translation pairs still don't use it. |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Popcorndude]] |
|||
| more = /Apertium separable |
|||
}} |
|||
{{IdeaSummary |
|||
* {{c14n}} stands for canonicalisation. These projects are intended to make it easier to develop new language pairs using Apertium without having to resort to non-Apertium modules.--> |
|||
| name = Bring an unreleased translation pair to releasable quality |
|||
| difficulty = Medium |
|||
| size = large |
|||
| skills = shell scripting |
|||
| description = Take an unstable language pair and improve its quality, focusing on testvoc |
|||
| rationale = Many Apertium language pairs have large dictionaries and have otherwise seen much development, but are not of releasable quality. The point of this project would be bring one translation pair to releasable quality. This would entail obtaining good naïve coverage and a clean [[testvoc]]. |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Seviay Bayatlı|Sevilay Bayatlı]], [[User:Unhammer]], [[User:hectoralos|Hèctor Alòs i Font]] |
|||
| more = /Make a language pair state-of-the-art |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Develop a prototype MT system for a strategic language pair |
|||
| difficulty = Medium |
|||
| size = large |
|||
| skills = XML, some knowledge of linguistics and of one relevant natural language |
|||
| description = Create a translation pair based on two existing language modules, focusing on the dictionary and structural transfer |
|||
| rationale = Choose a strategic set of languages to develop an MT system for, such that you know the target language well and morphological transducers for each language are part of Apertium. Develop an Apertium MT system by focusing on writing a bilingual dictionary and structural transfer rules. Expanding the transducers and disambiguation, and writing lexical selection rules and multiword sequences may also be part of the work. The pair may be an existing prototype, but if it's a heavily developed but unreleased pair, consider applying for "Bring an unreleased translation pair to releasable quality" instead. |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Sevilay Bayatlı| Sevilay Bayatlı]], [[User:Unhammer]], [[User:hectoralos|Hèctor Alòs i Font]] |
|||
| more = /Adopt a language pair |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Add a new variety to an existing language |
|||
| difficulty = easy |
|||
| size = either |
|||
| skills = XML, some knowledge of linguistics and of one relevant natural language |
|||
| description = Add a language variety to one or more released pairs, focusing on the dictionary and lexical selection |
|||
| rationale = Take a released language, and define a new language variety for it: e.g. Quebec French or Provençal Occitan. Then add the new variety to one or more released language pairs, without diminishing the quality of the pre-existing variety(ies). The objective is to facilitate the generation of varieties for languages with a weak standardisation and/or pluricentric languages. |
|||
| mentors = [[User:hectoralos|Hèctor Alòs i Font]], [[User:Firespeaker|Jonathan Washington]],[[User:piraye|Sevilaybayatlı]] |
|||
| more = /Add a new variety to an existing language |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Leverage and integrate language preferences into language pairs |
|||
| difficulty = easy |
|||
| size = medium |
|||
| skills = XML, some knowledge of linguistics and of one relevant natural language |
|||
| description = Update language pairs with lexical and orthographical variations to leverage the new [[Dialectal_or_standard_variation|preferences]] functionality |
|||
| rationale = Currently, preferences are implemented via language variant, which relies on multiple dictionaries, increasing compilation time exponentially every time a new preference gets introduced. |
|||
| mentors = [[User:Xavivars|Xavi Ivars]] [[User:Unhammer]] |
|||
| more = /Use preferences in pair |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Add Capitalization Handling Module to a Language Pair |
|||
| difficulty = easy |
|||
| size = small |
|||
| skills = XML, knowledge of some relevant natural language |
|||
| description = Update a language pair to make use make use of the new [[Capitalization_restoration|Capitalization handling module]] |
|||
| rationale = Correcting capitalization via transfer rules is tedious and error prone, but putting them in a separate set of rules should allow them to be handled in a more concise and maintainable way. Additionally, it is possible that capitalization rule could be moved to monolingual modules, thus reducing development effort on translators. |
|||
| mentors = [[User:Popcorndude]] |
|||
| more = /Capitalization |
|||
}} |
|||
== Data Extraction == |
|||
A lot of the language data we need to make our analyzers and translators work already exists in other forms and we just need to figure out how to convert it. If you know of another source of data that isn't listed, we'd love to hear about it. |
|||
{{IdeaSummary |
|||
| name = dictionary induction from wikis |
|||
| difficulty = Medium |
|||
| size = either |
|||
| skills = MySQL, mediawiki syntax, perl, maybe C++ or Java; Java, Scala, RDF, and DBpedia to use DBpedia extraction |
|||
| description = Extract dictionaries from linguistic wikis |
|||
| rationale = Wiki dictionaries and encyclopedias (e.g. omegawiki, wiktionary, wikipedia, dbpedia) contain information (e.g. bilingual equivalences, morphological features, conjugations) that could be exploited to speed up the development of dictionaries for Apertium. This task aims at automatically building dictionaries by extracting different pieces of information from wiki structures such as interlingual links, infoboxes and/or from dbpedia RDF datasets. |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Popcorndude]] |
|||
| more = /Dictionary induction from wikis |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Dictionary induction from parallel corpora / Revive ReTraTos |
|||
| difficulty = Medium |
|||
| size = medium |
|||
| skills = C++, perl, python, xml, scripting, machine learning |
|||
| description = Extract dictionaries from parallel corpora |
|||
| rationale = Given a pair of monolingual modules and a parallel corpus, we should be able to run a program to align tagged sentences and give us the best entries that are missing from bidix. [[ReTraTos]] (from 2008) did this back in 2008, but it's from 2008. We want a program which builds and runs in 2022, and does all the steps for the user. |
|||
| mentors = [[User:Unhammer]], [[User:Popcorndude]] |
|||
| more = /Dictionary induction from parallel corpora |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Extract morphological data from FLEx |
|||
| difficulty = hard |
|||
| size = large |
|||
| skills = python, XML parsing |
|||
| description = Write a program to extract data from [https://software.sil.org/fieldworks/ SIL FieldWorks] and convert as much as possible to monodix (and maybe bidix). |
|||
| rationale = There's a lot of potentially useful data in FieldWorks files that might be enough to build a whole monodix for some languages but it's currently really hard to use |
|||
| mentors = [[User:Popcorndude|Popcorndude]], [[User:TommiPirinen|Flammie]] |
|||
| more = /FieldWorks_data_extraction |
|||
}} |
|||
== Tooling == |
|||
These are projects for people who would be comfortable digging through our C++ codebases (you will be doing a lot of that). |
|||
{{IdeaSummary |
|||
| name = Python API for Apertium |
|||
| difficulty = medium |
|||
| size = medium |
|||
| skills = C++, Python |
|||
| description = Update the Python API for Apertium to expose all Apertium modes and test with all major OSes |
|||
| rationale = The current Python API misses out on a lot of functionality, like phonemicisation, segmentation, and transliteration, and doesn't work for some OSes <s>like Debian</s>. |
|||
| mentors = [[User:Francis Tyers|Francis Tyers]] |
|||
| more = /Python API |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Robust tokenisation in lttoolbox |
|||
| difficulty = Medium |
|||
| size = large |
|||
| skills = C++, XML, Python |
|||
| description = Improve the longest-match left-to-right tokenisation strategy in [[lttoolbox]] to handle spaceless orthographies. |
|||
| rationale = One of the most frustrating things about working with Apertium on texts "in the wild" is the way that the tokenisation works. If a letter is not specified in the alphabet, it is dealt with as whitespace, so e.g. you get unknown words split in two so you can end up with stuff like ^G$ö^k$ı^rmak$ which is terrible for further processing. Additionally, the system is nearly impossible to use for languages that don't use spaces, such as Japanese. |
|||
| mentors = [[User:Francis Tyers|Francis Tyers]], [[User:TommiPirinen|Flammie]] |
|||
| more = /Robust tokenisation |
|||
}} |
|||
{{IdeaSummary |
|||
| name = rule visualization tools |
|||
| difficulty = Medium |
|||
| size = either |
|||
| skills = python? javascript? XML |
|||
| description = make tools to help visualize the effect of various rules |
|||
| rationale = TODO see https://github.com/Jakespringer/dapertium for an example |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Sevilay Bayatlı|Sevilay Bayatlı]], [[User:Popcorndude]] |
|||
| more = /Visualization tools |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Extend Weighted transfer rules |
|||
| difficulty = Medium |
|||
| size = medium |
|||
| skills = C++, python |
|||
| description = The weighted transfer module is already applied to the chunker transfer rules. And the idea here is to extend that module to be applied to interchunk and postchunk transfer rules too. |
|||
| rationale = As a resource see https://github.com/aboelhamd/Weighted-transfer-rules-module |
|||
| mentors = [[User: Sevilay Bayatlı|Sevilay Bayatlı]] |
|||
| more = /Make a module |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Automatic Error-Finder / Pseudo-Backpropagation |
|||
| difficulty = Hard |
|||
| size = large |
|||
| skills = python? |
|||
| description = Develop a tool to locate the approximate source of translation errors in the pipeline. |
|||
| rationale = Being able to generate a list of probable error sources automatically makes it possible to prioritize issues by frequency, frees up developer time, and is a first step towards automated generation of better rules. |
|||
| mentors = [[User:Popcorndude]] |
|||
| more = /Backpropagation |
|||
}} |
|||
{{IdeaSummary |
|||
| name = More Robust Recursive Transfer |
|||
| difficulty = Hard |
|||
| size = large |
|||
| skills = C++ |
|||
| description = Ensure [[Apertium-recursive#Further_Documentation|Recursive Transfer]] survives ambiguous or incomplete parse trees |
|||
| rationale = Currently, one has to be very careful in writing recursive transfer rules to ensure they don't get too deep or ambiguous, and that they cover full sentences. See in particular issues [https://github.com/apertium/apertium-recursive/issues/97 97] and [https://github.com/apertium/apertium-recursive/issues/80 80]. We would like linguists to be able to fearlessly write recursive (rtx) rules based on what makes linguistic sense, and have rtx-proc/rtx-comp deal with the computational/performance side. |
|||
| mentors = |
|||
| more = /More_robust_recursive_transfer |
|||
}} |
|||
{{IdeaSummary |
|||
| name = CG-based Transfer |
|||
| difficulty = Hard |
|||
| size = large |
|||
| skills = C++ |
|||
| description = Linguists already write dependency trees in [[Constraint Grammar]]. A following step could use these to reorder into target language trees. |
|||
| mentors = |
|||
| more = |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Language Server Protocol |
|||
| difficulty = Medium |
|||
| size = medium |
|||
| skills = any programming language |
|||
| description = Build a [https://microsoft.github.io/language-server-protocol/|Language Server] for the various Apertium rule formats |
|||
| rationale = We have some static analysis tools and syntax highlighters already and it would be great if we could combine and expand them to support more text editors. |
|||
| mentors = [[User:Popcorndude]] |
|||
| more = /Language Server Protocol |
|||
}} |
|||
{{IdeaSummary |
|||
| name = WASM Compilation |
|||
| difficulty = hard |
|||
| size = medium |
|||
| skills = C++, Javascript |
|||
| description = Compile the pipeline modules to WASM and provide JS wrappers for them. |
|||
| rationale = There are situations where it would be nice to be able to run the entire pipeline in the browser |
|||
| mentors = [[User:Tino Didriksen|Tino Didriksen]] |
|||
| more = /WASM |
|||
}} |
|||
== Web == |
|||
If you know Python and JavaScript, here's some ideas for improving our [https://apertium.org website]. Some of these should be fairly short and it would be a good idea to talk to the mentors about doing a couple of them together. |
|||
{{IdeaSummary |
|||
| name = Web API extensions |
|||
| difficulty = medium |
|||
| size = small |
|||
| skills = Python |
|||
| description = Update the web API for Apertium to expose all Apertium modes |
|||
| rationale = The current Web API misses out on a lot of functionality, like phonemicisation, segmentation, transliteration, and paradigm generation. |
|||
| mentors = [[User:Francis Tyers|Francis Tyers]], [[User:Firespeaker|Jonathan Washington]], [[User:Xavivars|Xavi Ivars]] |
|||
| more = /Apertium APY |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Website Improvements: Misc |
|||
| difficulty = Medium |
|||
| size = small |
|||
| skills = html, css, js, python |
|||
| description = Improve elements of Apertium's web infrastructure |
|||
| rationale = Apertium's website infrastructure [[Apertium-html-tools]] and its supporting API [[APy|Apertium APy]] have numerous open issues. This project would entail choosing a subset of open issues and features that could realistically be completed in the summer. You're encouraged to speak with the Apertium community to see which features and issues are the most pressing. |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Xavivars|Xavi Ivars]] |
|||
| more = /Website improvements |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Website Improvements: Dictionary Lookup |
|||
| difficulty = Medium |
|||
| size = small |
|||
| skills = html, css, js, python |
|||
| description = Finish implementing dictionary lookup mode in Apertium's web infrastructure |
|||
| rationale = Apertium's website infrastructure [[Apertium-html-tools]] and its supporting API [[APy|Apertium APy]] have numerous open issues, including half-completed features like dictionary lookup. This project would entail completing the dictionary lookup feature. Some additional features which would be good to work would include automatic reverse lookups (so that a user has a better understanding of the results), grammatical information (such as the gender of nouns or the conjugation paradigms of verbs), and information about MWEs. |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Xavivars|Xavi Ivars]], [[User:Popcorndude]] |
|||
| more = https://github.com/apertium/apertium-html-tools/issues/105 the open issue on GitHub |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Website Improvements: Spell checking |
|||
| difficulty = Medium |
|||
| size = small |
|||
| skills = html, js, css, python |
|||
| description = Add a spell-checking interface to Apertium's web tools |
|||
| rationale = [[Apertium-html-tools]] has seen some prototypes for spell-checking interfaces (all in stale PRs and branches on GitHub), but none have ended up being quite ready to integrate into the tools. This project would entail polishing up or recreating an interface, and making sure [[APy]] has a mode that allows access to Apertium voikospell modules. The end result should be a slick, easy-to-use interface for proofing text, with intuitive underlining of text deemed to be misspelled and intuitive presentation and selection of alternatives. [https://github.com/apertium/apertium-html-tools/issues/390 the open issue on GitHub] |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Xavivars|Xavi Ivars]] |
|||
| more = /Spell checker web interface |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Website Improvements: Suggestions |
|||
| difficulty = Medium |
|||
| size = small |
|||
| skills = html, css, js, python |
|||
| description = Finish implementing a suggestions interface for Apertium's web infrastructure |
|||
| rationale = Some work has been done to add a "suggestions" interface to Apertium's website infrastructure [[Apertium-html-tools]] and its supporting API [[APy|Apertium APy]], whereby users can suggest corrected translations. This project would entail finishing that feature. There are some related [https://github.com/apertium/apertium-html-tools/issues/55 issues] and [https://github.com/apertium/apertium-html-tools/pull/252 PRs] on GitHub. |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Xavivars|Xavi Ivars]] |
|||
| more = /Website improvements |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Website Improvements: Orthography conversion interface |
|||
| difficulty = Medium |
|||
| size = small |
|||
| skills = html, js, css, python |
|||
| description = Add an orthography conversion interface to Apertium's web tools |
|||
| rationale = Several Apertium language modules (like Kazakh, Kyrgyz, Crimean Tatar, and Hñähñu) have orthography conversion modes in their mode definition files. This project would be to expose those modes through [[APy|Apertium APy]] and provide a simple interface in [[Apertium-html-tools]] to use them. |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Xavivars|Xavi Ivars]] |
|||
| more = /Website improvements |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Add support for NMT to web API |
|||
| difficulty = Medium |
|||
| size = medium |
|||
| skills = python, NMT |
|||
| description = Add support for a popular NMT engine to Apertium's web API |
|||
| rationale = Currently Apertium's web API [[APy|Apertium APy]], supports only Apertium language modules. But the front end could just as easily interface with an API that supports trained NMT models. The point of the project is to add support for one popular NMT package (e.g., translateLocally/Bergamot, OpenNMT or JoeyNMT) to the APy. |
|||
| mentors = [[User:Firespeaker|Jonathan Washington]], [[User:Xavivars|Xavi Ivars]] |
|||
| more = |
|||
}} |
|||
== Integrations == |
|||
In addition to incorporating data from other projects, it would be nice if we could also make our data useful to them. |
|||
{{IdeaSummary |
|||
| name = OmniLingo and Apertium |
|||
| difficulty = medium |
|||
| size = either |
|||
| skills = JS, Python |
|||
| description = OmniLingo is a language learning system for practicing listening comprehension using Common Voice data. There is a lot of text processing involved (for example tokenisation) that could be aided by Apertium tools. |
|||
| rationale = |
|||
| mentors = [[User:Francis Tyers|Francis Tyers]] |
|||
| more = /OmniLingo |
|||
}} |
|||
{{IdeaSummary |
|||
| name = Support for Enhanced Dependencies in UD Annotatrix |
|||
| difficulty = medium |
|||
| size = medium |
|||
| skills = NodeJS |
|||
| description = UD Annotatrix is an annotation interface for Universal Dependencies, but does not yet support all functionality. |
|||
| rationale = |
|||
| mentors = [[User:Francis Tyers|Francis Tyers]] |
|||
| more = /Annotatrix enhanced dependencies |
|||
}} |
|||
<!-- |
|||
This one was done, but could do with more work. Not sure if it's a full gsoc though? |
|||
{{IdeaSummary |
|||
| name = User-friendly lexical selection training |
|||
| difficulty = Medium |
|||
| skills = Python, C++, shell scripting |
|||
| description = Make it so that training/inference of lexical selection rules is a more user-friendly process |
|||
| rationale = Our lexical selection module allows for inferring rules from corpora and word alignments, but the procedure is currently a bit messy, with various scripts involved that require lots of manual tweaking, and many third party tools to be installed. The goal of this task is to make the procedure as user-friendly as possible, so that ideally only a simple config file would be needed, and a driver script would take care of the rest. |
|||
| mentors = [[User:Unhammer|Unhammer]], [[User:Mlforcada|Mikel Forcada]] |
|||
| more = /User-friendly lexical selection training |
|||
}} |
|||
--> |
|||
{{IdeaSummary |
|||
| name = UD and Apertium integration |
|||
| difficulty = Entry level |
|||
| size = medium |
|||
| skills = python, javascript, HTML, (C++) |
|||
| description = Create a range of tools for making Apertium compatible with Universal Dependencies |
|||
| rationale = Universal dependencies is a fast growing project aimed at creating a unified annotation scheme for treebanks. This includes both part-of-speech and morphological features. Their annotated corpora could be extremely useful for Apertium for training models for translation. In addition, Apertium's rule-based morphological descriptions could be useful for software that relies on Universal dependencies. |
|||
| mentors = [[User:Francis Tyers]], [[User:Firespeaker| Jonathan Washington]], [[User:Popcorndude]] |
|||
| more = /UD and Apertium integration |
|||
}} |
|||
[[Category:Development]] |
[[Category:Development]] |
Latest revision as of 09:15, 4 March 2024
This is the ideas page for Google Summer of Code, here you can find ideas on interesting projects that would make Apertium more useful for people and improve or expand our functionality.
Current Apertium contributors: If you have an idea please add it below, if you think you could mentor someone in a particular area, add your name to "Interested mentors" using ~~~
.
Prospective GSoC contributors: The page is intended as an overview of the kind of projects we have in mind. If one of them particularly piques your interest, please come and discuss with us on #apertium
on irc.oftc.net
(more on IRC), mail the mailing list, or draw attention to yourself in some other way.
Note that if you have an idea that isn't mentioned here, we would be very interested to hear about it.
Here are some more things you could look at:
- Top tips for GSOC applications
- Get in contact with one of our long-serving mentors — they are nice, honest!
- Pages in the development category
- Resources that could be converted or expanded in the incubator. Consider doing or improving a language pair (see incubator, nursery and staging for pairs that need work)
- Unhammer's wishlist
If you're a prospective GSoC contributor trying to propose a topic, the recommended way is to request a wiki account and then go to
http://wiki.apertium.org/wiki/User:[[your username]]/GSoC2023Proposal
and click the "create" button near the top of the page. It's also nice to include [[Category:GSoC_2023_student_proposals]]
to help organize submitted proposals.
Language Data[edit]
Can you read or write a language other than English (and we do mean any language)? If so, you can help with one of these and we can help you figure out the technical parts.
Develop a morphological analyser[edit]
- Difficulty:
3. Entry level - Size: Multiple lengths possible (discuss with the mentors which option is better for you)
- Required skills:
XML or HFST or lexd - Description:
Write a morphological analyser and generator for a language that does not yet have one - Rationale:
A key part of an Apertium machine translation system is a morphological analyser and generator. The objective of this task is to create an analyser for a language that does not yet have one. - Mentors:
Francis Tyers, Jonathan Washington, Sevilay Bayatlı, Hossep, nlhowell, User:Popcorndude - read more...
apertium-separable language-pair integration[edit]
- Difficulty:
2. Medium - Size: Small
- Required skills:
XML, a scripting language (Python, Perl), some knowledge of linguistics and/or at least one relevant natural language - Description:
Choose a language you can identify as having a good number of "multiwords" in the lexicon. Modify all language pairs in Apertium to use the Apertium-separable module to process the multiwords, and clean up the dictionaries accordingly. - Rationale:
Apertium-separable is a newish module to process lexical items with discontinguous dependencies, an area where Apertium has traditionally fallen short. Despite all the module has to offer, many translation pairs still don't use it. - Mentors:
Jonathan Washington, User:Popcorndude - read more...
Bring an unreleased translation pair to releasable quality[edit]
- Difficulty:
2. Medium - Size: Large
- Required skills:
shell scripting - Description:
Take an unstable language pair and improve its quality, focusing on testvoc - Rationale:
Many Apertium language pairs have large dictionaries and have otherwise seen much development, but are not of releasable quality. The point of this project would be bring one translation pair to releasable quality. This would entail obtaining good naïve coverage and a clean testvoc. - Mentors:
Jonathan Washington, Sevilay Bayatlı, User:Unhammer, Hèctor Alòs i Font - read more...
Develop a prototype MT system for a strategic language pair[edit]
- Difficulty:
2. Medium - Size: Large
- Required skills:
XML, some knowledge of linguistics and of one relevant natural language - Description:
Create a translation pair based on two existing language modules, focusing on the dictionary and structural transfer - Rationale:
Choose a strategic set of languages to develop an MT system for, such that you know the target language well and morphological transducers for each language are part of Apertium. Develop an Apertium MT system by focusing on writing a bilingual dictionary and structural transfer rules. Expanding the transducers and disambiguation, and writing lexical selection rules and multiword sequences may also be part of the work. The pair may be an existing prototype, but if it's a heavily developed but unreleased pair, consider applying for "Bring an unreleased translation pair to releasable quality" instead. - Mentors:
Jonathan Washington, Sevilay Bayatlı, User:Unhammer, Hèctor Alòs i Font - read more...
Add a new variety to an existing language[edit]
- Difficulty:
3. Entry level - Size: Multiple lengths possible (discuss with the mentors which option is better for you)
- Required skills:
XML, some knowledge of linguistics and of one relevant natural language - Description:
Add a language variety to one or more released pairs, focusing on the dictionary and lexical selection - Rationale:
Take a released language, and define a new language variety for it: e.g. Quebec French or Provençal Occitan. Then add the new variety to one or more released language pairs, without diminishing the quality of the pre-existing variety(ies). The objective is to facilitate the generation of varieties for languages with a weak standardisation and/or pluricentric languages. - Mentors:
Hèctor Alòs i Font, Jonathan Washington,Sevilaybayatlı - read more...
Leverage and integrate language preferences into language pairs[edit]
- Difficulty:
3. Entry level - Size: Medium
- Required skills:
XML, some knowledge of linguistics and of one relevant natural language - Description:
Update language pairs with lexical and orthographical variations to leverage the new preferences functionality - Rationale:
Currently, preferences are implemented via language variant, which relies on multiple dictionaries, increasing compilation time exponentially every time a new preference gets introduced. - Mentors:
Xavi Ivars User:Unhammer - read more...
Add Capitalization Handling Module to a Language Pair[edit]
- Difficulty:
3. Entry level - Size: Small
- Required skills:
XML, knowledge of some relevant natural language - Description:
Update a language pair to make use make use of the new Capitalization handling module - Rationale:
Correcting capitalization via transfer rules is tedious and error prone, but putting them in a separate set of rules should allow them to be handled in a more concise and maintainable way. Additionally, it is possible that capitalization rule could be moved to monolingual modules, thus reducing development effort on translators. - Mentors:
User:Popcorndude - read more...
Data Extraction[edit]
A lot of the language data we need to make our analyzers and translators work already exists in other forms and we just need to figure out how to convert it. If you know of another source of data that isn't listed, we'd love to hear about it.
dictionary induction from wikis[edit]
- Difficulty:
2. Medium - Size: Multiple lengths possible (discuss with the mentors which option is better for you)
- Required skills:
MySQL, mediawiki syntax, perl, maybe C++ or Java; Java, Scala, RDF, and DBpedia to use DBpedia extraction - Description:
Extract dictionaries from linguistic wikis - Rationale:
Wiki dictionaries and encyclopedias (e.g. omegawiki, wiktionary, wikipedia, dbpedia) contain information (e.g. bilingual equivalences, morphological features, conjugations) that could be exploited to speed up the development of dictionaries for Apertium. This task aims at automatically building dictionaries by extracting different pieces of information from wiki structures such as interlingual links, infoboxes and/or from dbpedia RDF datasets. - Mentors:
Jonathan Washington, User:Popcorndude - read more...
Dictionary induction from parallel corpora / Revive ReTraTos[edit]
- Difficulty:
2. Medium - Size: Medium
- Required skills:
C++, perl, python, xml, scripting, machine learning - Description:
Extract dictionaries from parallel corpora - Rationale:
Given a pair of monolingual modules and a parallel corpus, we should be able to run a program to align tagged sentences and give us the best entries that are missing from bidix. ReTraTos (from 2008) did this back in 2008, but it's from 2008. We want a program which builds and runs in 2022, and does all the steps for the user. - Mentors:
User:Unhammer, User:Popcorndude - read more...
Extract morphological data from FLEx[edit]
- Difficulty:
1. Hard - Size: Large
- Required skills:
python, XML parsing - Description:
Write a program to extract data from SIL FieldWorks and convert as much as possible to monodix (and maybe bidix). - Rationale:
There's a lot of potentially useful data in FieldWorks files that might be enough to build a whole monodix for some languages but it's currently really hard to use - Mentors:
Popcorndude, Flammie - read more...
Tooling[edit]
These are projects for people who would be comfortable digging through our C++ codebases (you will be doing a lot of that).
Python API for Apertium[edit]
- Difficulty:
2. Medium - Size: Medium
- Required skills:
C++, Python - Description:
Update the Python API for Apertium to expose all Apertium modes and test with all major OSes - Rationale:
The current Python API misses out on a lot of functionality, like phonemicisation, segmentation, and transliteration, and doesn't work for some OSeslike Debian. - Mentors:
Francis Tyers - read more...
Robust tokenisation in lttoolbox[edit]
- Difficulty:
2. Medium - Size: Large
- Required skills:
C++, XML, Python - Description:
Improve the longest-match left-to-right tokenisation strategy in lttoolbox to handle spaceless orthographies. - Rationale:
One of the most frustrating things about working with Apertium on texts "in the wild" is the way that the tokenisation works. If a letter is not specified in the alphabet, it is dealt with as whitespace, so e.g. you get unknown words split in two so you can end up with stuff like ^G$ö^k$ı^rmak$ which is terrible for further processing. Additionally, the system is nearly impossible to use for languages that don't use spaces, such as Japanese. - Mentors:
Francis Tyers, Flammie - read more...
rule visualization tools[edit]
- Difficulty:
2. Medium - Size: Multiple lengths possible (discuss with the mentors which option is better for you)
- Required skills:
python? javascript? XML - Description:
make tools to help visualize the effect of various rules - Rationale:
TODO see https://github.com/Jakespringer/dapertium for an example - Mentors:
Jonathan Washington, Sevilay Bayatlı, User:Popcorndude - read more...
Extend Weighted transfer rules[edit]
- Difficulty:
2. Medium - Size: Medium
- Required skills:
C++, python - Description:
The weighted transfer module is already applied to the chunker transfer rules. And the idea here is to extend that module to be applied to interchunk and postchunk transfer rules too. - Rationale:
As a resource see https://github.com/aboelhamd/Weighted-transfer-rules-module - Mentors:
Sevilay Bayatlı - read more...
Automatic Error-Finder / Pseudo-Backpropagation[edit]
- Difficulty:
1. Hard - Size: Large
- Required skills:
python? - Description:
Develop a tool to locate the approximate source of translation errors in the pipeline. - Rationale:
Being able to generate a list of probable error sources automatically makes it possible to prioritize issues by frequency, frees up developer time, and is a first step towards automated generation of better rules. - Mentors:
User:Popcorndude - read more...
More Robust Recursive Transfer[edit]
- Difficulty:
1. Hard - Size: Large
- Required skills:
C++ - Description:
Ensure Recursive Transfer survives ambiguous or incomplete parse trees - Rationale:
Currently, one has to be very careful in writing recursive transfer rules to ensure they don't get too deep or ambiguous, and that they cover full sentences. See in particular issues 97 and 80. We would like linguists to be able to fearlessly write recursive (rtx) rules based on what makes linguistic sense, and have rtx-proc/rtx-comp deal with the computational/performance side. - Mentors:
- read more...
CG-based Transfer[edit]
- Difficulty:
1. Hard - Size: Large
- Required skills:
C++ - Description:
Linguists already write dependency trees in Constraint Grammar. A following step could use these to reorder into target language trees. - Rationale:
{{{rationale}}} - Mentors:
- [[|read more...]]
Language Server Protocol[edit]
- Difficulty:
2. Medium - Size: Medium
- Required skills:
any programming language - Description:
Build a [https://microsoft.github.io/language-server-protocol/ - Rationale:
We have some static analysis tools and syntax highlighters already and it would be great if we could combine and expand them to support more text editors. - Mentors:
User:Popcorndude - read more...
WASM Compilation[edit]
- Difficulty:
1. Hard - Size: Medium
- Required skills:
C++, Javascript - Description:
Compile the pipeline modules to WASM and provide JS wrappers for them. - Rationale:
There are situations where it would be nice to be able to run the entire pipeline in the browser - Mentors:
Tino Didriksen - read more...
Web[edit]
If you know Python and JavaScript, here's some ideas for improving our website. Some of these should be fairly short and it would be a good idea to talk to the mentors about doing a couple of them together.
Web API extensions[edit]
- Difficulty:
2. Medium - Size: Small
- Required skills:
Python - Description:
Update the web API for Apertium to expose all Apertium modes - Rationale:
The current Web API misses out on a lot of functionality, like phonemicisation, segmentation, transliteration, and paradigm generation. - Mentors:
Francis Tyers, Jonathan Washington, Xavi Ivars - read more...
Website Improvements: Misc[edit]
- Difficulty:
2. Medium - Size: Small
- Required skills:
html, css, js, python - Description:
Improve elements of Apertium's web infrastructure - Rationale:
Apertium's website infrastructure Apertium-html-tools and its supporting API Apertium APy have numerous open issues. This project would entail choosing a subset of open issues and features that could realistically be completed in the summer. You're encouraged to speak with the Apertium community to see which features and issues are the most pressing. - Mentors:
Jonathan Washington, Xavi Ivars - read more...
Website Improvements: Dictionary Lookup[edit]
- Difficulty:
2. Medium - Size: Small
- Required skills:
html, css, js, python - Description:
Finish implementing dictionary lookup mode in Apertium's web infrastructure - Rationale:
Apertium's website infrastructure Apertium-html-tools and its supporting API Apertium APy have numerous open issues, including half-completed features like dictionary lookup. This project would entail completing the dictionary lookup feature. Some additional features which would be good to work would include automatic reverse lookups (so that a user has a better understanding of the results), grammatical information (such as the gender of nouns or the conjugation paradigms of verbs), and information about MWEs. - Mentors:
Jonathan Washington, Xavi Ivars, User:Popcorndude - [the open issue on GitHub|read more...]
Website Improvements: Spell checking[edit]
- Difficulty:
2. Medium - Size: Small
- Required skills:
html, js, css, python - Description:
Add a spell-checking interface to Apertium's web tools - Rationale:
Apertium-html-tools has seen some prototypes for spell-checking interfaces (all in stale PRs and branches on GitHub), but none have ended up being quite ready to integrate into the tools. This project would entail polishing up or recreating an interface, and making sure APy has a mode that allows access to Apertium voikospell modules. The end result should be a slick, easy-to-use interface for proofing text, with intuitive underlining of text deemed to be misspelled and intuitive presentation and selection of alternatives. the open issue on GitHub - Mentors:
Jonathan Washington, Xavi Ivars - read more...
Website Improvements: Suggestions[edit]
- Difficulty:
2. Medium - Size: Small
- Required skills:
html, css, js, python - Description:
Finish implementing a suggestions interface for Apertium's web infrastructure - Rationale:
Some work has been done to add a "suggestions" interface to Apertium's website infrastructure Apertium-html-tools and its supporting API Apertium APy, whereby users can suggest corrected translations. This project would entail finishing that feature. There are some related issues and PRs on GitHub. - Mentors:
Jonathan Washington, Xavi Ivars - read more...
Website Improvements: Orthography conversion interface[edit]
- Difficulty:
2. Medium - Size: Small
- Required skills:
html, js, css, python - Description:
Add an orthography conversion interface to Apertium's web tools - Rationale:
Several Apertium language modules (like Kazakh, Kyrgyz, Crimean Tatar, and Hñähñu) have orthography conversion modes in their mode definition files. This project would be to expose those modes through Apertium APy and provide a simple interface in Apertium-html-tools to use them. - Mentors:
Jonathan Washington, Xavi Ivars - read more...
Add support for NMT to web API[edit]
- Difficulty:
2. Medium - Size: Medium
- Required skills:
python, NMT - Description:
Add support for a popular NMT engine to Apertium's web API - Rationale:
Currently Apertium's web API Apertium APy, supports only Apertium language modules. But the front end could just as easily interface with an API that supports trained NMT models. The point of the project is to add support for one popular NMT package (e.g., translateLocally/Bergamot, OpenNMT or JoeyNMT) to the APy. - Mentors:
Jonathan Washington, Xavi Ivars - [[|read more...]]
Integrations[edit]
In addition to incorporating data from other projects, it would be nice if we could also make our data useful to them.
OmniLingo and Apertium[edit]
- Difficulty:
2. Medium - Size: Multiple lengths possible (discuss with the mentors which option is better for you)
- Required skills:
JS, Python - Description:
OmniLingo is a language learning system for practicing listening comprehension using Common Voice data. There is a lot of text processing involved (for example tokenisation) that could be aided by Apertium tools. - Rationale:
- Mentors:
Francis Tyers - read more...
Support for Enhanced Dependencies in UD Annotatrix[edit]
- Difficulty:
2. Medium - Size: Medium
- Required skills:
NodeJS - Description:
UD Annotatrix is an annotation interface for Universal Dependencies, but does not yet support all functionality. - Rationale:
- Mentors:
Francis Tyers - read more...
UD and Apertium integration[edit]
- Difficulty:
3. Entry level - Size: Medium
- Required skills:
python, javascript, HTML, (C++) - Description:
Create a range of tools for making Apertium compatible with Universal Dependencies - Rationale:
Universal dependencies is a fast growing project aimed at creating a unified annotation scheme for treebanks. This includes both part-of-speech and morphological features. Their annotated corpora could be extremely useful for Apertium for training models for translation. In addition, Apertium's rule-based morphological descriptions could be useful for software that relies on Universal dependencies. - Mentors:
User:Francis Tyers, Jonathan Washington, User:Popcorndude - read more...