Difference between revisions of "User:Wei2912"
(→Conversion of PDF dictionary to lttoolbox format: Add hopefully final script) |
(→Conversion of PDF dictionary to lttoolbox format: Update dix format) |
||
Line 267: | Line 267: | ||
<?xml version="1.0" encoding="utf-8"?> |
<?xml version="1.0" encoding="utf-8"?> |
||
<dictionary> |
<dictionary> |
||
<section id="main" type="standard"> |
|||
<pardefs> |
|||
<!--аа exc. Oh! See!--> |
<!--аа exc. Oh! See!--> |
||
<e |
<e> |
||
<p> |
<p> |
||
<l>аа<s n="ij"/></l> |
<l>аа<s n="ij"/></l> |
||
Line 276: | Line 276: | ||
</e> |
</e> |
||
<!--ааҕыс v. to reckon with--> |
<!--ааҕыс v. to reckon with--> |
||
<e |
<e> |
||
<p> |
<p> |
||
<l>ааҕыс<s n="v"/><s n="TD"/></l> |
<l>ааҕыс<s n="v"/><s n="TD"/></l> |
||
<r>reckon<b/>with<s n="v"/><s n="TD"/></r> |
<r>reckon<b/>with<s n="v"/><s n="TD"/></r> |
||
</p> |
|||
</e> |
|||
<!--аайы a. each, every--> |
|||
<e r="LR"> |
|||
<p> |
|||
<l>аайы<s n="adj"/></l> |
|||
<r>each<s n="adj"/></r> |
|||
</p> |
|||
</e> |
|||
<e r="LR"> |
|||
<p> |
|||
<l>аайы<s n="adj"/></l> |
|||
<r>every<s n="adj"/></r> |
|||
</p> |
|||
</e> |
|||
<!--күн аайы every day--> |
|||
<!--аак cf аах n. document, paper--> |
|||
<e r="LR"> |
|||
<p> |
|||
<l>аак<s n="n"/></l> |
|||
<r>document<s n="n"/></r> |
|||
</p> |
|||
</e> |
|||
<e r="LR"> |
|||
<p> |
|||
<l>аак<s n="n"/></l> |
|||
<r>paper<s n="n"/></r> |
|||
</p> |
</p> |
||
</e> |
</e> |
Revision as of 19:07, 4 December 2014
My name is Wei En and I'm currently a GCI student. My blog is at http://wei2912.github.io.
I decided to help out at Apertium because I find the work here quite interesting and I believe Apertium will benefit many.
The following are projects related to Apertium.
Wiktionary Crawler
https://github.com/wei2912/WiktionaryCrawler is a crawler for Wiktionary which aims to extract data from pages. It was created for a GCI task which you can read about at Task ideas for Google Code-in/Scrape inflection information from Wiktionary.
The crawler crawls a starting category (usually Category:XXX language)for subcategories, then crawls these subcategories for pages. It then passes the page to language-specific parsers which turn it into the Speling format.
The current languages supported are Chinese (zh), Thai (th) and Lao (lo). You are welcome to contribute to this project.
Spaceless Segmentation
Spaceless Segmentation has been merged into Apertium under https://svn.code.sf.net/p/apertium/svn/branches/tokenisation. It serves to tokenize languages without any whitespace. More information can be found under Task ideas for Google Code-in/Tokenisation for spaceless orthographies.
The tokeniser looks for possible tokenisations in the corpus text and selects the tokenisation which tokens appears the most in corpus.
A report comparing the above method, LRLM and RLLM (longest left to right matching and longest right to left matching respectively) is available at https://www.dropbox.com/sh/57wtof3gbcbsl7c/AABI-Mcw2E-c942BXxsMbEAja
Conversion of PDF dictionary to lttoolbox format
NOTE: This document is a draft.
In this example we're converting the following PDF file: http://home.uchicago.edu/straughn/sakhadic.pdf
We copy the text directly from the PDF file, as PDF to text converters are currently unable to convert the text properly (thanks to the arcane PDF format).
Then, we pipe the text to our script:
#!/usr/bin/python3 # -*- coding: utf-8 -*- import fileinput import itertools import re import xml.etree.cElementTree as ET BRACKETS_RE = re.compile(r'(\(.+?\)|\[.+?\])') PAGENUMBER_RE = re.compile(r'^\d+$') SPLIT_RE = re.compile(r'[;,]\s+') ABBRVS = { 'a.': ['adj'], 'adv.': ['adv'], 'arch.': [], # cf. see also -- has been wiped out 'comp.': [], # conv. converb, modifying verb -- covered later 'dial.': [], 'det.': ['det'], 'Evk.': [], 'exc.': ['ij'], 'int.': ['itg'], 'Mongo.': [], 'n.': ['n'], 'num.': ['det', 'qnt'], 'ono.': [], 'pl.': ['pl'], 'pp.': ['post'], 'pro.': ['prn'], 'Russ.': [], 'v.': ['v', 'TD'] } class Entry(object): def __split(self, line): return SPLIT_RE.split(line) def __init__(self, line): tags = line.split() self.words = [] self.abbrvs = [] self.meanings = [] found_abbrv = False found_conv = False for tag in tags: if tag in ABBRVS.keys(): # abbreviations found_abbrv = True self.abbrvs.extend(ABBRVS[tag]) continue elif tag == "conv.": found_abbrv = True found_conv = True self.abbrvs.append("vaux") continue if not found_abbrv: # entrys self.words.append(tag) else: # translated self.meanings.append(tag) # if there's "cf" in a word, we trim off everything else for i, word in enumerate(self.words): if word == "cf": self.words = self.words[:i] # if there's a converb, just look at the last word if found_conv: self.words = self.words[-1] else: self.words = " ".join(self.words) self.meanings = " ".join(self.meanings) self.words = strip_brackets(self.words) self.meanings = strip_brackets(self.meanings) if not self.abbrvs: self.words = None self.abbrvs = None self.meanings = None return # preprocessing meanings self.meanings = self.meanings.replace("to", "") # split up meanings and entrys self.words = [x.strip() for x in self.__split(self.words)] self.meanings = [x.strip() for x in self.__split(self.meanings)] def insert_blanks(element, line): words = line.split() if not words: return element.text = words[0] element.tail = None blank = None for i in words[1:]: blank = ET.SubElement(element, 'b') blank.tail = i def is_page_num(line): return PAGENUMBER_RE.match(line) def strip_brackets(line): brackets = BRACKETS_RE.search(line) if brackets: for bracket in brackets.groups(): line = line.replace(bracket, "") return line def is_cyrillic(word): num_non_cyrillic = 0 num_cyrillic = 0 for c in word: ordc = ord(c) if 0x0400 <= ordc <= 0x04FF: num_cyrillic += 1 else: num_non_cyrillic += 1 return num_cyrillic > num_non_cyrillic def preprocess(lines): def preprocess_line(line): if not line: return None line = line.strip() line = line.replace("•", "") line = line.replace("=", "") line = line.replace("cf.", "cf") line = strip_brackets(line) if not line or is_page_num(line): return None return line new_lines = [] for i, line in enumerate(lines): line = preprocess_line(line) if not line: continue # check if next line should be merged with this line if i+1 < len(lines): words = line.split() next_line = preprocess_line(lines[i+1]) if next_line: if (len(words) == 1 or not is_cyrillic(next_line.split()[0])): lines[i+1] = line + " " + next_line continue orig_word = "" for j, word in enumerate(words): if j+1 >= len(words): continue next_word = words[j+1] if word.endswith("."): orig_word = " ".join(words[:j]) if word.endswith(";"): # if semicolon seperates dictionary entries if is_cyrillic(next_word): words[j] = word.replace(";", "") line = " ".join(words[:j+1]) next_line = " ".join(words[j+1:]) lines.insert(i+1, next_line) break # if semicolon seperates abbreviations elif next_word.endswith("."): words[j] = word.replace(";", "") line = " ".join(words[:j+1]) next_line = orig_word + " " + " ".join(words[j+1:]) lines.insert(i+1, next_line) break line = line.strip() if line: new_lines.append(line) return new_lines def main(): dictionary = ET.Element("dictionary") section = ET.SubElement(dictionary, "section") section.set("id", "main") section.set("type", "standard") lines = list(fileinput.input()) new_lines = preprocess(lines) for line in new_lines: comment = ET.Comment(text=line) section.append(comment) entry = Entry(line) if not (entry.words and entry.abbrvs and entry.meanings): continue for word, meaning in itertools.product(entry.words, entry.meanings): e = ET.SubElement(section, "e") p = ET.SubElement(e, 'p') # add word and meaning left = ET.SubElement(p, 'l') insert_blanks(left, word) right = ET.SubElement(p, 'r') insert_blanks(right, meaning) # add abbreviations for abbrv in entry.abbrvs: s = ET.Element('s') s.set('n', abbrv) left.append(s) right.append(s) ET.dump(dictionary) main()
This will give us a XML dump of the dictionary, converted to the lttoolbox format. We format the XML file as shown here:
$ xmllint --format --encode utf8 file.xml > file.dix
The `--encode utf8` option prevents `xmllint` from escaping our unicode.
The final file format looks like this:
<?xml version="1.0" encoding="utf-8"?> <dictionary> <section id="main" type="standard"> <!--аа exc. Oh! See!--> <e> <p> <l>аа<s n="ij"/></l> <r>Oh!<b/>See!<s n="ij"/></r> </p> </e> <!--ааҕыс v. to reckon with--> <e> <p> <l>ааҕыс<s n="v"/><s n="TD"/></l> <r>reckon<b/>with<s n="v"/><s n="TD"/></r> </p> </e> ...