Difference between revisions of "Apertium separable"

From Apertium
Jump to navigation Jump to search
(s/sourceforge link/github link/)
 
(6 intermediate revisions by 5 users not shown)
Line 4: Line 4:


==Installing==
==Installing==
Prerequisites and compilation are the same as lttoolbox and apertium. See [[Installation]]. On Debian/Ubuntu derivatives, it is part of the nightly repo as <code>apt-get install apertium-separable</code>.
The module is part of the [[nightly repositories]] as <code>apt-get install apertium-separable</code>.


If you'd like to compile it manually—e.g., for development purposes—you can follow these instructions:
The code can be found at https://github.com/apertium/apertium-separable and instructions for compiling the module are:

Prerequisites and compilation are the same as lttoolbox and apertium. See [[Installation]].

The code can be found at [https://github.com/apertium/apertium-separable https://github.com/apertium/apertium-separable], and instructions for compiling the module are:


<pre>
<pre>
Line 15: Line 19:
</pre>
</pre>


You'll need lttoolbox from git (or, greater than the current release 3.3.3) and associated libraries, and zlib (debian: zlib1g-dev).
You'll need <code>lttoolbox</code> from git (or, greater than the current release 3.3.3) and associated libraries, and <code>zlib</code> (debian: <code>zlib1g-dev</code>).

<s>It is not currently part of distributed Apertium binaries for other distros/OSs.</s> It is now available via the nightly repositories as the <code>apertium-separable</code> module.


==Lexical transfer in the pipeline==
==Lexical transfer in the pipeline==
Line 68: Line 70:
<pardefs>
<pardefs>
<pardef n="adj"> <!-- to represent all adjectives -->
<pardef n="adj"> <!-- to represent all adjectives -->
<e><i><w/><s n="adj"/><j/></i></e> <!-- word only has the adj tag -->
<e><i><w/><s n="adj"/><d/></i></e> <!-- word only has the adj tag -->
<e><i><w/><s n="adj"/><t/><j/></i></e> <!-- word has the adj tag followed by one or more other tags -->
<e><i><w/><s n="adj"/><t/><d/></i></e> <!-- word has the adj tag followed by one or more other tags -->
</pardef>
</pardef>
<pardef n="n"> #to represent all nouns
<pardef n="n"> #to represent all nouns
<e><i><w/><s n="n"/><t/><j/></i></e> <!-- word has the n tag followed by one or more other tags -->
<e><i><w/><s n="n"/><t/><d/></i></e> <!-- word has the n tag followed by one or more other tags -->
</pardef>
</pardef>
<pardef n="SN"> #to represent all noun phrases
<pardef n="SN"> #to represent all noun phrases
Line 80: Line 82:
</pardef>
</pardef>
<pardef n="freq-adv">
<pardef n="freq-adv">
<e><i>always<s n="adv"/><j/></i></e> <!-- i.e. ^always<adv>$ -->
<e><i>always<s n="adv"/><d/></i></e> <!-- i.e. ^always<adv>$ -->
<e><i>anually<s n="adv"/><j/></i></e>
<e><i>anually<s n="adv"/><d/></i></e>
<e><i>bianually<s n="adv"/><j/></i></e>
<e><i>bianually<s n="adv"/><d/></i></e>
</pardef>
</pardef>
</pardefs>
</pardefs>
Line 102: Line 104:
<pardefs>
<pardefs>
<pardef n="adj">
<pardef n="adj">
<e><i><w/><s n="adj"/><j/></i></e>
<e><i><w/><s n="adj"/><d/></i></e>
<e><i><w/><s n="adj"/><t/><j/></i></e>
<e><i><w/><s n="adj"/><t/><d/></i></e>
</pardef>
</pardef>
<pardef n="n">
<pardef n="n">
<e><i><w/><s n="n"/><t/><j/></i></e>
<e><i><w/><s n="n"/><t/><d/></i></e>
</pardef>
</pardef>
<pardef n="SN">
<pardef n="SN">
Line 114: Line 116:
</pardef>
</pardef>
<pardef n="freq-adv">
<pardef n="freq-adv">
<e><i>always<s n="adv"/><j/></i></e>
<e><i>always<s n="adv"/><d/></i></e>
<e><i>anually<s n="adv"/><j/></i></e>
<e><i>anually<s n="adv"/><d/></i></e>
<e><i>bianually<s n="adv"/><j/></i></e>
<e><i>bianually<s n="adv"/><d/></i></e>
</pardef>
</pardef>
</pardefs>
</pardefs>
<section id="main" type="standard">
<section id="main" type="standard">
<e lm="be late" c="llegar tarde">
<e lm="be late" c="llegar tarde">
<p><l>be<s n="vbser"/></l><r>be<g><b/>late</g><s n="vbser"/></r></p><i><t/><j/></i>
<p><l>be<s n="vbser"/></l><r>be<g><b/>late</g><s n="vbser"/></r></p><i><t/><d/></i>
<par n="SAdv"/><p><l>late<t/><j/></l><r></r></p>
<par n="SAdv"/><p><l>late<t/><d/></l><r></r></p>
</e>
</e>
<e lm="take away" c="sacar, quitar">
<e lm="take away" c="sacar, quitar">
<p><l>take<s n="vblex"/></l><r>take<g><b/>away</g><s n="vblex"/></r></p><i><t/><j/></i>
<p><l>take<s n="vblex"/></l><r>take<g><b/>away</g><s n="vblex"/></r></p><i><t/><d/></i>
<par n="SN"/><p><l>away<t/><j/></l><r></r></p>
<par n="SN"/><p><l>away<t/><d/></l><r></r></p>
</e>
</e>
</section>
</section>
Line 136: Line 138:
* {{tag|w/}} stands for one or more alphabetic symbols
* {{tag|w/}} stands for one or more alphabetic symbols
* {{tag|t/}} stands for one or more tags (multicharacter symbols).
* {{tag|t/}} stands for one or more tags (multicharacter symbols).
* {{tag|j/}} stands for the word boundary symbol $
* {{tag|d/}} stands for the word boundary symbol $


i.e.
i.e.
* <code> <e><i><w/><s n="adj"/><t/><j/></i></e> </code> is equivalent to <code> any-one-or-more-chars<adj><required-anytag><...optional-anytag...><$> </code>
* <code> <e><i><w/><s n="adj"/><t/><d/></i></e> </code> is equivalent to <code> any-one-or-more-chars<adj><required-anytag><...optional-anytag...><$> </code>
** ^tall<adj><sint><...>$
** ^tall<adj><sint><...>$
* <code> <e><i><w/><s n="adj"/><j/></i></e> </code> is equivalent to <code> any-one-or-more-chars<adj><$> </code>
* <code> <e><i><w/><s n="adj"/><d/></i></e> </code> is equivalent to <code> any-one-or-more-chars<adj><$> </code>
** ^tall<adj>$
** ^tall<adj>$


A larger example dictionary can be found at https://svn.code.sf.net/p/apertium/svn/branches/apertium-separable/examples/apertium-eng-spa.eng-spa.lsx
A larger example dictionary can be found at https://github.com/apertium/apertium-separable/blob/master/examples/apertium-eng-spa.eng-spa.lsx.


The lsx dictionary file names are of the form <code> apertium-A-B.A-B.lsx </code>, where apertium-A-B is the name of the language pair. For example, file <code>apertium-eng-cat.eng-cat.lsx</code> is the lsx dictionary for the <code> eng-cat </code> pair. The names of the compiled binaries are of the form <code> apertium-A-B.autoseq.bin </code>. For example, <code> eng-cat.autoseq.bin </code>.
The lsx dictionary file names are of the form <code> apertium-A-B.A-B.lsx </code>, where apertium-A-B is the name of the language pair. For example, file <code>apertium-eng-cat.eng-cat.lsx</code> is the lsx dictionary for the <code> eng-cat </code> pair. The names of the compiled binaries are of the form <code> apertium-A-B.autoseq.bin </code>. For example, <code> eng-cat.autoseq.bin </code>.
Line 175: Line 177:
This is the output of feeding the sentence through <code> apertium-tagger </code> and then <code> apertium-pretransfer </code>:
This is the output of feeding the sentence through <code> apertium-tagger </code> and then <code> apertium-pretransfer </code>:
<pre>
<pre>
^the<det><def><sp>$ ^Aragonese<n><sg>$ ^take<vblex><past>$ ^Ramiro<np><ant><m><sg>$ ^out of<pr>$ ^a<det><ind><sg>$ ^monastery<n><sg>$ ^and<cnjcoo>$ ^make<vblex><pp>$ ^prpers<prn><obj><p3><m><sg>$ ^king<n><sg>$^.<sent>$
^the<det><def><sp>$ ^Aragonese<n><sg>$ ^take<vblex><past>$ ^Ramiro<np><ant><m><sg>$ ^out of<pr>$ ^a<det><ind><sg>$
^monastery<n><sg>$ ^and<cnjcoo>$ ^make<vblex><pp>$ ^prpers<prn><obj><p3><m><sg>$ ^king<n><sg>$^.<sent>$
</pre>
</pre>


This is the output of feeding the output above through <code> lsx-proc </code> with apertium-eng-spa.eng-spa.lsx:
This is the output of feeding the output above through <code> lsx-proc </code> with apertium-eng-spa.eng-spa.lsx:
<pre>
<pre>
^the<det><def><sp>$ ^Aragonese<n><sg>$ ^take# out<vblex><sep><past>$ ^Ramiro<np><ant><m><sg>$ ^of<pr>$ ^a<det><ind><sg>$ ^monastery<n><sg>$ ^and<cnjcoo>$ ^make<vblex><pp>$ ^prpers<prn><obj><p3><m><sg>$ ^king<n><sg>$^.<sent>$
^the<det><def><sp>$ ^Aragonese<n><sg>$ ^take# out<vblex><sep><past>$ ^Ramiro<np><ant><m><sg>$ ^of<pr>$ ^a<det><ind><sg>$
^monastery<n><sg>$ ^and<cnjcoo>$ ^make<vblex><pp>$ ^prpers<prn><obj><p3><m><sg>$ ^king<n><sg>$^.<sent>$
</pre>
</pre>


==Troubleshooting==
==Matching forms==
===Segmentation fault===
Segmentation fault upon compilation or usage <br/>
The lsx-dictionary compiles fine with zero entries but gives a seg fault once entries are added <br/>


You can also use lsx-proc on readings that include forms. Run <code>apertium-tagger</code> with <code>-p</code> to ensure forms are not stripped off, and run <code>lsx-proc</code> with <code>-p</code> to enable analysing forms. Use <code>&lt;f/&gt;</code> to match the <code>/</code> between form and reading:
...no solution found yet <br/>
something is not updated or something in the makefile (?)


<pre>
make sure that the makefile ...
$ cat sep.lsx
<?xml version="1.0" encoding="UTF-8"?>
<dictionary type="separable">
<alphabet></alphabet>
<sdefs>
<sdef n="np"/>
<sdef n="pr"/>
<sdef n="vblex"/>
<sdef n="adv"/>
</sdefs>


<pardefs>
===Complaints about step_override()===
svn update in lttoolbox (and do make, make install) <br/>
You'll need an up-to-date version of lttoolbox and associated libraries, and zlib (debian: zlib1g-dev). <br/>


<pardef n="reading" c="match and keep readings (incl. tagless/unknown). Includes end delimiter">
<e> <i><f/><w/><d/></i> </e>
<e> <i><f/><w/><t/><d/></i> </e>
</pardef>

<pardef n="reading:" c="match and drop readings (incl. tagless/unknown). Includes end delimiter">
<e><p><l><f/><w/><d/></l> <r/></p></e>
<e><p><l><f/><w/><t/><d/></l><r/></p></e>
</pardef>

<pardef n="pr|jf" c="includes end delimiter">
<e><i><w/><f/><w/><s n="pr"/><t/><d/></i></e>
<e><i>jf.</i> <par n="reading"/></e>
</pardef>

</pardefs>

<section id="main" type="standard">

<e c="merge">
<par n="pr|jf"/>
<p><l>lov</l> <r></r></p> <par n="reading:"/>
<p><l>om</l> <r></r></p> <par n="reading:"/>
<p><l>kake</l> <r></r></p> <par n="reading:"/>
<p><l></l> <r>lov<b/>om<b/>kake<s n="np"/><d/></r></p>
</e>

<e c="split">
<p><l>wouldnae</l> <r></r></p> <par n="reading:"/>
<p><l></l> <r>would<f/>will<s n="vblex"/><d space="no"/></r></p>
<p><l></l> <r>nae<f/>not<s n="adv"/><d/></r></p>
</e>

<!--
The "reading" pardefs above will match all readings (even
unknowns), so they really just filter on form.

But we could easily match on lemmas/tags as well, e.g the below entry would turn

^aint/benot<vblex><adv>$
into
^ai/be<vblex>$ ^nt/not<adv>$

but would not match
^aint/havenot<vblex><adv>$
-->
<e c="require certain lemma/tags">
<p><l>aint<f/>benot<s n="vblex"/><s n="adv"/><d/></l> <r></r></p>
<p><l></l> <r>ai<f/>be<s n="vblex"/><d space="no"/></r></p>
<p><l></l> <r>nt<f/>not<s n="adv"/><d/></r></p>
</e>

</section>
</dictionary>

$ lsx-comp lr sep.lsx sep.bin
main@standard 99 118

$ echo '^jf./jf.<pr>$ ^lov/lov<n><m>$ ^om/om<pr>$ ^kake/kake<n><f>$' | lsx-proc -w -p sep.bin
^jf./jf.<pr>$ ^lov/lov om kake<np>$

$ echo '^wouldnae/willnot<vblex><adv>$' | lsx-proc -w -p sep.bin
^would/will<vblex>$^nae/not<adv>$

$ echo '^wouldnae/*wouldnae$' | lsx-proc -w -p sep.bin
^would/will<vblex>$^nae/not<adv>$

$ echo '^aint/benot<vblex><adv>$' | lsx-proc -w -p sep.bin
^ai/be<vblex>$^nt/not<adv>$

$ echo '^aint/havenot<vblex><adv>$' | lsx-proc -w -p sep.bin
^aint/havenot<vblex><adv>$

</pre>

'''NB''': If you are using [[HFST]] to create your lsx binary, you will need to run <code>lt-comp</code> with the <code>-S</code> option on your [[ATT]] file, e.g.
<code>lt-comp -S lr sep.att sep.bin</code>

==Troubleshooting==
===Undefined symbol===
===Undefined symbol===
In your dictionary you are probably using a symbol that you didn't define in the sdefs. Add the symbol to the sdefs.
In your dictionary you are probably using a symbol that you didn't define in the sdefs. Add the symbol to the sdefs.
Line 217: Line 304:
=== Transfer-like super powers ===
=== Transfer-like super powers ===
* Transfer-like capabilities for the lexicon (super powers). E.g., gustar / like
* Transfer-like capabilities for the lexicon (super powers). E.g., gustar / like

=== Inheritance and clean up code ===
* [[https://svn.code.sf.net/p/apertium/svn/branches/apertium-separable/src/lsx_compiler.cc lsx-comp]] was hitched from the lttoolbox/compiler. In the future we may want to integrate it back and have lsx-comp and lsx-proc inherit directly from lttoolbox (?)


=== The one-to-many bug ===
=== The one-to-many bug ===
Line 236: Line 320:
<pardefs>
<pardefs>
<pardef n="adj">
<pardef n="adj">
<e><i><w/><s n="adj"/><j/></i></e>
<e><i><w/><s n="adj"/><d/></i></e>
<e><i><w/><s n="adj"/><t/><j/></i></e>
<e><i><w/><s n="adj"/><t/><d/></i></e>
</pardef>
</pardef>
<pardef n="n">
<pardef n="n">
<e><i><w/><s n="n"/><t/><j/></i></e>
<e><i><w/><s n="n"/><t/><d/></i></e>
</pardef>
</pardef>
<pardef n="SN">
<pardef n="SN">
Line 251: Line 335:
<e lm="кабарда" c="хабар ет">
<e lm="кабарда" c="хабар ет">
<p><l>хабар<b/>ет<s n="v"/></l>
<p><l>хабар<b/>ет<s n="v"/></l>
<r>хабар<s n="n"/><s n="nom"/><j/>ет<s n="v"/></r></p><i><t/><j/></i>
<r>хабар<s n="n"/><s n="nom"/><d/>ет<s n="v"/></r></p><i><t/><d/></i>
</e>
</e>
<e lm="абайла" c="абай бол">
<e lm="абайла" c="абай бол">
<p><l>абай<b/>бол<s n="v"/></l>
<p><l>абай<b/>бол<s n="v"/></l>
<r>абай<s n="adj"/><j/>бол<s n="v"/></r></p><i><t/><j/></i>
<r>абай<s n="adj"/><d/>бол<s n="v"/></r></p><i><t/><d/></i>
</e>
</e>
<e lm="абайла" c="абай бол">
<e lm="абайла" c="абай бол">
<p><l>абай<b/>бол<s n="v"/></l>
<p><l>абай<b/>бол<s n="v"/></l>
<r>абай<s n="adj"/><j/>бол<s n="v"/></r></p><i><t/>+ма<t/><j/></i>
<r>абай<s n="adj"/><d/>бол<s n="v"/></r></p><i><t/>+ма<t/><d/></i>
<!-- p><l>абай<s n="adj"/><j/>бол<s n="v"/><t/></l>
<!-- p><l>абай<s n="adj"/><d/>бол<s n="v"/><t/></l>
<r>абай<b/>бол<s n="v"/><t/></r></p -->
<r>абай<b/>бол<s n="v"/><t/></r></p -->
</e>
</e>
<e lm="сууга түш" c="шомылда">
<e lm="сууга түш" c="шомылда">
<p><l>сууга<b/>түш<s n="v"/></l>
<p><l>сууга<b/>түш<s n="v"/></l>
<r>суу<s n="n"/><s n="dat"/><j/>түш<s n="v"/></r></p><i><t/><j/></i>
<r>суу<s n="n"/><s n="dat"/><d/>түш<s n="v"/></r></p><i><t/><d/></i>
</e>
</e>


Line 276: Line 360:
<pre>
<pre>
$(PREFIX1).autoseq.bin: $(BASENAME).$(PREFIX1).lsx
$(PREFIX1).autoseq.bin: $(BASENAME).$(PREFIX1).lsx
lsx-comp $< $@
lsx-comp lr $< $@


$(PREFIX2).autoseq.bin: $(BASENAME).$(PREFIX2).lsx
$(PREFIX2).autoseq.bin: $(BASENAME).$(PREFIX2).lsx
lsx-comp $< $@
lsx-comp lr $< $@


$(PREFIX1).revautoseq.bin: $(BASENAME).$(PREFIX1).lsx
$(PREFIX1).revautoseq.bin: $(BASENAME).$(PREFIX1).lsx
lsx-comp rl $< $@
lt-print $(PREFIX1).autoseq.bin | sed 's/ /@_SPACE_@/g' > $(PREFIX1).autoseq.att
hfst-txt2fst -e ε < $(PREFIX1).autoseq.att > $(PREFIX1).autoseq.hfst
hfst-invert $(PREFIX1).autoseq.hfst | hfst-minimise > $(PREFIX1).revautoseq.hfst
hfst-fst2txt $(PREFIX1).revautoseq.hfst | gzip -9 -c -n > $(PREFIX1).revautoseq.att.gz
zcat < $(PREFIX1).revautoseq.att.gz > $(PREFIX1).revautoseq.att
sed 's/@0@/ε/g' $(PREFIX1).revautoseq.att > $(PREFIX1).revautoseq.1.att
lt-comp lr $(PREFIX1).revautoseq.1.att $@



$(PREFIX2).revautoseq.bin: $(BASENAME).$(PREFIX2).lsx
$(PREFIX2).revautoseq.bin: $(BASENAME).$(PREFIX2).lsx
lsx-comp rl $< $@
lt-print $(PREFIX2).autoseq.bin | sed 's/ /@_SPACE_@/g' > $(PREFIX2).autoseq.att
hfst-txt2fst -e ε < $(PREFIX2).autoseq.att > $(PREFIX2).autoseq.hfst
hfst-invert $(PREFIX2).autoseq.hfst | hfst-minimise > $(PREFIX2).revautoseq.hfst
hfst-fst2txt $(PREFIX2).revautoseq.hfst | gzip -9 -c -n > $(PREFIX2).revautoseq.att.gz
zcat < $(PREFIX2).revautoseq.att.gz > $(PREFIX2).revautoseq.att
sed 's/@0@/ε/g' $(PREFIX2).revautoseq.att > $(PREFIX2).revautoseq.1.att
lt-comp lr $(PREFIX2).revautoseq.1.att $@

</pre>
</pre>


Line 327: Line 397:


==See also==
==See also==
* https://svn.code.sf.net/p/apertium/svn/branches/apertium-separable
* [[Apertium system architecture]]
* [[Apertium system architecture]]
* GSOC project [[User:Irene/proposal | proposal]], [[User:Irene/workplan | workplan]], [[Lsx_module/report | report]]
* GSOC project [[User:Irene/proposal | proposal]], [[User:Irene/workplan | workplan]], [[Lsx_module/report | report]]

Latest revision as of 18:54, 2 May 2024

Lttoolbox provides a module for reordering separable/discontiguous multiwords and processing them in the pipeline. Multiwords are manually written in an additional xml-format dictionary.

Installing[edit]

The module is part of the nightly repositories as apt-get install apertium-separable.

If you'd like to compile it manually—e.g., for development purposes—you can follow these instructions:

Prerequisites and compilation are the same as lttoolbox and apertium. See Installation.

The code can be found at https://github.com/apertium/apertium-separable, and instructions for compiling the module are:

./autogen.sh
./configure
make
make install

You'll need lttoolbox from git (or, greater than the current release 3.3.3) and associated libraries, and zlib (debian: zlib1g-dev).

Lexical transfer in the pipeline[edit]

lsx-proc runs directly AFTER apertium-tagger and apertium-pretransfer:
(note: previously this page had said that lsx-proc runs between BETWEEN apertium-tagger and apertium-pretransfer. it has now been determined that it should run AFTER pretransfer.)

… | apertium-tagger -g en-es.prob |  apertium-pretransfer | lsx-proc en-es.autoseq.bin | …

Usage[edit]

Creating the lsx-dictionary[edit]

The lsx dictionary format is largely similar to those of the morphological and bilingual dictionaries. (see also: Apertium_New_Language_Pair_HOWTO)

We begin with a declaration of the dictionary. There is currently nothing in it, only a declaration that we want to begin a new dictionary.

<dictionary type="separable">
</dictionary>

Then add the alphabet entry, this can be empty as the alphabet is only used for tokenisation and the lsx module comes after the text is tokenised. Now we have:

<dictionary type="separable">
    <alphabet></alphabet> 
</dictionary>

Next we need to add the symbol definitions, abbreviated to sdefs. These are the symbols that your words are tagged with, e.g. noun or verb or adj. Again, you should be able to just copy the sdef section from your language's monodix, and it should contain many more than in this basic example.

<dictionary type="separable">
    <alphabet></alphabet>
    <sdefs>
        <sdef n="adj"/>
        <sdef n="adv"/>
        <sdef n="n"/>
        <sdef n="sep"/>
        <sdef n="vblex"/>
    </sdefs>
</dictionary>

Now we need to add the paradigm definitions, abbreviated to pardefs. These represent patterns of word orders. The following example represents words tagged as adjective, noun, noun phrase, and frequency adjectives. See the note below about the tags <w/>, <t/>, <j/>. The lemma can be represented as anychars (<w/>, such as in adj and n below; or by typing out the word itself, such as in freq-adv below. Pardefs can be used to create other pardefs, such as in SN below. Adding paradigms into the dictionary, we get:

<dictionary type="separable">
    <alphabet></alphabet>
    <sdefs>
        ...
    </sdefs>
    <pardefs>
        <pardef n="adj"> <!-- to represent all adjectives -->
            <e><i><w/><s n="adj"/><d/></i></e> <!-- word only has the adj tag -->
            <e><i><w/><s n="adj"/><t/><d/></i></e> <!-- word has the adj tag followed by one or more other tags -->
        </pardef>
        <pardef n="n"> #to represent all nouns
            <e><i><w/><s n="n"/><t/><d/></i></e> <!-- word has the n tag followed by one or more other tags -->
        </pardef>
        <pardef n="SN"> #to represent all noun phrases
            <e><par n="n"/></e>
            <e><par n="adj"/><par n="n"/></e> <!-- word phrase is comprised of an adjective word followed by a noun word -->
            <e><par n="adj"/><par n="adj"/><par n="n"/></e> <!-- word phrase is comprised of two adjectives followed by a noun -->
        </pardef>
        <pardef n="freq-adv">
            <e><i>always<s n="adv"/><d/></i></e> <!-- i.e. ^always<adv>$ -->
            <e><i>anually<s n="adv"/><d/></i></e>
            <e><i>bianually<s n="adv"/><d/></i></e>
        </pardef>
    </pardefs>
</dictionary>

Finally, we add the main entries. Here is the final result of our small example dictionary:

<dictionary type="separable">
    <alphabet></alphabet>
    <sdefs>
        <sdef n="adj"/>
        <sdef n="adv"/>
        <sdef n="n"/>
        <sdef n="sep"/>
        <sdef n="vblex"/>
    </sdefs>
    <pardefs>
        <pardef n="adj">
            <e><i><w/><s n="adj"/><d/></i></e>
            <e><i><w/><s n="adj"/><t/><d/></i></e>
        </pardef>
        <pardef n="n">
            <e><i><w/><s n="n"/><t/><d/></i></e>
        </pardef>
        <pardef n="SN">
            <e><par n="n"/></e>
            <e><par n="adj"/><par n="n"/></e>
            <e><par n="adj"/><par n="adj"/><par n="n"/></e>
        </pardef>
        <pardef n="freq-adv">
            <e><i>always<s n="adv"/><d/></i></e>
            <e><i>anually<s n="adv"/><d/></i></e>
            <e><i>bianually<s n="adv"/><d/></i></e>
        </pardef>
    </pardefs>
    <section id="main" type="standard">
        <e lm="be late" c="llegar tarde">
            <p><l>be<s n="vbser"/></l><r>be<g><b/>late</g><s n="vbser"/></r></p><i><t/><d/></i>
            <par n="SAdv"/><p><l>late<t/><d/></l><r></r></p>
        </e>
        <e lm="take away" c="sacar, quitar">
            <p><l>take<s n="vblex"/></l><r>take<g><b/>away</g><s n="vblex"/></r></p><i><t/><d/></i>
            <par n="SN"/><p><l>away<t/><d/></l><r></r></p>
        </e>
    </section>
</dictionary>

Note:

  • <w/> stands for one or more alphabetic symbols
  • <t/> stands for one or more tags (multicharacter symbols).
  • <d/> stands for the word boundary symbol $

i.e.

  • <e><w/><t/><d/></e> is equivalent to any-one-or-more-chars<adj><required-anytag><...optional-anytag...><$>
    • ^tall<adj><sint><...>$
  • <e><w/><d/></e> is equivalent to any-one-or-more-chars<adj><$>
    • ^tall<adj>$

A larger example dictionary can be found at https://github.com/apertium/apertium-separable/blob/master/examples/apertium-eng-spa.eng-spa.lsx.

The lsx dictionary file names are of the form apertium-A-B.A-B.lsx , where apertium-A-B is the name of the language pair. For example, file apertium-eng-cat.eng-cat.lsx is the lsx dictionary for the eng-cat pair. The names of the compiled binaries are of the form apertium-A-B.autoseq.bin . For example, eng-cat.autoseq.bin .

Compilation[edit]

Compilation into the binary format is achieved by means of the lsx-comp program. Specifying lr as the mode will produce an analyser, and rl will produce a generator.

$ lsx-comp lr apertium-eng-spa.eng-spa.lsx eng-spa.autoseq.bin
main@standard 61 73

Processing[edit]

Processing can be done using the lsx-proc program.

The input to lsx-proc is the output of apertium-tagger and apertium-pretransfer ,

$ echo '^take<vblex><imp>$ ^prpers<prn><obj><p3><nt><sg>$ ^out of<pr>$ ^there<adv>$^.<sent>$' | lsx-proc eng-spa.autoseq.bin
^take# out<vblex><sep><imp>$ ^prpers<prn><obj><p3><nt><sg>$ ^of<pr>$ ^there<adv>$^.<sent>$

Example usages[edit]

Example #1: A sentence in plain text,

The Aragonese took Ramiro out of a monastery and made him king.

This is the output of feeding the sentence through apertium-tagger and then apertium-pretransfer :

^the<det><def><sp>$ ^Aragonese<n><sg>$ ^take<vblex><past>$ ^Ramiro<np><ant><m><sg>$ ^out of<pr>$ ^a<det><ind><sg>$
^monastery<n><sg>$ ^and<cnjcoo>$ ^make<vblex><pp>$ ^prpers<prn><obj><p3><m><sg>$ ^king<n><sg>$^.<sent>$

This is the output of feeding the output above through lsx-proc with apertium-eng-spa.eng-spa.lsx:

^the<det><def><sp>$ ^Aragonese<n><sg>$ ^take# out<vblex><sep><past>$ ^Ramiro<np><ant><m><sg>$ ^of<pr>$ ^a<det><ind><sg>$
^monastery<n><sg>$ ^and<cnjcoo>$ ^make<vblex><pp>$ ^prpers<prn><obj><p3><m><sg>$ ^king<n><sg>$^.<sent>$

Matching forms[edit]

You can also use lsx-proc on readings that include forms. Run apertium-tagger with -p to ensure forms are not stripped off, and run lsx-proc with -p to enable analysing forms. Use <f/> to match the / between form and reading:

$ cat sep.lsx
<?xml version="1.0" encoding="UTF-8"?>
<dictionary type="separable">
  <alphabet></alphabet>
  <sdefs>
    <sdef n="np"/>
    <sdef n="pr"/>
    <sdef n="vblex"/>
    <sdef n="adv"/>
  </sdefs>

  <pardefs>

    <pardef n="reading" c="match and keep readings (incl. tagless/unknown). Includes end delimiter">
      <e>   <i><f/><w/><d/></i>            </e>
      <e>   <i><f/><w/><t/><d/></i>        </e>
    </pardef>

    <pardef n="reading:" c="match and drop readings (incl. tagless/unknown). Includes end delimiter">
      <e><p><l><f/><w/><d/></l>    <r/></p></e>
      <e><p><l><f/><w/><t/><d/></l><r/></p></e>
    </pardef>

    <pardef n="pr|jf" c="includes end delimiter">
      <e><i><w/><f/><w/><s n="pr"/><t/><d/></i></e>
      <e><i>jf.</i>     <par n="reading"/></e>
    </pardef>

  </pardefs>

  <section id="main" type="standard">

    <e c="merge">
      <par n="pr|jf"/>
      <p><l>lov</l> <r></r></p> <par n="reading:"/>
      <p><l>om</l> <r></r></p> <par n="reading:"/>
      <p><l>kake</l> <r></r></p> <par n="reading:"/>
      <p><l></l> <r>lov<b/>om<b/>kake<s n="np"/><d/></r></p>
    </e>

    <e c="split">
      <p><l>wouldnae</l> <r></r></p> <par n="reading:"/>
      <p><l></l> <r>would<f/>will<s n="vblex"/><d space="no"/></r></p>
      <p><l></l> <r>nae<f/>not<s n="adv"/><d/></r></p>
    </e>

    <!--
        The "reading" pardefs above will match all readings (even
        unknowns), so they really just filter on form.

        But we could easily match on lemmas/tags as well, e.g the below entry would turn

        ^aint/benot<vblex><adv>$
        into
        ^ai/be<vblex>$ ^nt/not<adv>$

        but would not match
        ^aint/havenot<vblex><adv>$
    -->
    <e c="require certain lemma/tags">
      <p><l>aint<f/>benot<s n="vblex"/><s n="adv"/><d/></l> <r></r></p>
      <p><l></l> <r>ai<f/>be<s n="vblex"/><d space="no"/></r></p>
      <p><l></l> <r>nt<f/>not<s n="adv"/><d/></r></p>
    </e>

  </section>
</dictionary>

$ lsx-comp lr sep.lsx sep.bin
main@standard 99 118

$ echo '^jf./jf.<pr>$ ^lov/lov<n><m>$ ^om/om<pr>$ ^kake/kake<n><f>$' | lsx-proc -w -p sep.bin
^jf./jf.<pr>$ ^lov/lov om kake<np>$

$ echo '^wouldnae/willnot<vblex><adv>$' | lsx-proc -w -p sep.bin
^would/will<vblex>$^nae/not<adv>$

$ echo '^wouldnae/*wouldnae$' | lsx-proc -w -p sep.bin
^would/will<vblex>$^nae/not<adv>$

$ echo '^aint/benot<vblex><adv>$' | lsx-proc -w -p sep.bin
^ai/be<vblex>$^nt/not<adv>$

$ echo '^aint/havenot<vblex><adv>$' | lsx-proc -w -p sep.bin
^aint/havenot<vblex><adv>$

NB: If you are using HFST to create your lsx binary, you will need to run lt-comp with the -S option on your ATT file, e.g. lt-comp -S lr sep.att sep.bin

Troubleshooting[edit]

Undefined symbol[edit]

In your dictionary you are probably using a symbol that you didn't define in the sdefs. Add the symbol to the sdefs.

Future work[edit]

Offloading multiwords from transducers to lsx[edit]

In theory we're offloading multiwords from the transducers to lsx. This leaves open some questions:

  • how do we do N N compounds with lsx?
  • how does translation to a multiword work? In theory it's possible to invert the transducer, but an attempt to try this results in a transducer that looks right but silently fails to apply to input. Also, it will need to be able to handle the output of transfer. —Firespeaker (talk) 00:02, 1 September 2017 (CEST)

Recycling dictionaries and/or paradigms[edit]

lsx-dictionaries are packaged in language pairs. the eng-spa lsx-dictionary can mostly be reaped by eng-cat. could we make use of the similarity?

Beta testing[edit]

Support for language pairs: we haven't gotten much extensive beta testing. The following are language pairs that have packaged the lsx-module:

    • eng-cat
    • eng-deu (?)
    • kaz-kir

Beta test with more language pairs

Transfer-like super powers[edit]

  • Transfer-like capabilities for the lexicon (super powers). E.g., gustar / like

The one-to-many bug[edit]

Given the following lsx file:

<dictionary type="sequential">
	<alphabet>АӘБВГҒДЕЁЖЗИІЙКҚЛМНҢОӨПРСТУҰҮФХҺЦЧШЩЬЫЪЭЮЯаәбвгғдеёжзиійкқлмнңоөпрстуұүфхһцчшщьыъэюя</alphabet>
	<sdefs>
		<sdef n="adj"/>
		<sdef n="adv"/>
		<sdef n="n"/>
		<sdef n="nom"/>
		<sdef n="dat"/>
		<sdef n="v"/>
	</sdefs>
	<pardefs>
		<pardef n="adj">
			<e><i><w/><s n="adj"/><d/></i></e>
			<e><i><w/><s n="adj"/><t/><d/></i></e>
		</pardef>
		<pardef n="n">
			<e><i><w/><s n="n"/><t/><d/></i></e>
		</pardef>
		<pardef n="SN">
			<e><par n="n"/></e>
			<e><par n="adj"/><par n="n"/></e>
			<e><par n="adj"/><par n="adj"/><par n="n"/></e>
		</pardef>
	</pardefs>
	<section id="main" type="standard">
		<e lm="кабарда" c="хабар ет">
			<p><l>хабар<b/>ет<s n="v"/></l>
				<r>хабар<s n="n"/><s n="nom"/><d/>ет<s n="v"/></r></p><i><t/><d/></i>
		</e>
		<e lm="абайла" c="абай бол">
			<p><l>абай<b/>бол<s n="v"/></l>
				<r>абай<s n="adj"/><d/>бол<s n="v"/></r></p><i><t/><d/></i>
		</e>
		<e lm="абайла" c="абай бол">
			<p><l>абай<b/>бол<s n="v"/></l>
				<r>абай<s n="adj"/><d/>бол<s n="v"/></r></p><i><t/>+ма<t/><d/></i>
			<!-- p><l>абай<s n="adj"/><d/>бол<s n="v"/><t/></l>
				<r>абай<b/>бол<s n="v"/><t/></r></p -->
		</e>
		<e lm="сууга түш" c="шомылда">
			<p><l>сууга<b/>түш<s n="v"/></l>
				<r>суу<s n="n"/><s n="dat"/><d/>түш<s n="v"/></r></p><i><t/><d/></i>
		</e>

	</section>
</dictionary>

and the following code to compile it (where $(PREFIX1) is kaz-kir and $(PREFIX2) is kir-kaz and $(BASENAME) is apertium-kaz-kir; the above file is apertium-kaz-kir.kir-kaz.lsx):

$(PREFIX1).autoseq.bin: $(BASENAME).$(PREFIX1).lsx
	lsx-comp lr $< $@

$(PREFIX2).autoseq.bin: $(BASENAME).$(PREFIX2).lsx
	lsx-comp lr $< $@

$(PREFIX1).revautoseq.bin: $(BASENAME).$(PREFIX1).lsx
	lsx-comp rl $< $@

$(PREFIX2).revautoseq.bin: $(BASENAME).$(PREFIX2).lsx
	lsx-comp rl $< $@

EXPECTED OUTPUT:

we expect lr compilation to give the following behaviour:

$ echo "^хабар ет<v><iv><ifi><p1><sg>$" | lsx-proc kaz-kir.autoseq.bin
^хабар<n><nom>$ ^ет<v><iv><ifi><p1><sg>$

and

$ echo "^хабар<n><nom>$ ^ет<v><iv><ifi><p1><sg>$" | lsx-proc kaz-kir.autoseq.bin
^хабар<n><nom>$ ^ет<v><iv><ifi><p1><sg>$

WHEREAS with rl compilation (outputting with name revautoseq), we expect the following behaviour:

$ echo "^хабар<n><nom>$ ^ет<v><iv><ifi><p1><sg>$" | lsx-proc kaz-kir.revautoseq.bin
^хабар ет<v><iv><ifi><p1><sg>$

and

$ echo "^хабар ет<v><iv><ifi><p1><sg>$" | lsx-proc kaz-kir.revautoseq.bin
^хабар ет<v><iv><ifi><p1><sg>$

See also[edit]