User:Khannatanmai/GSoC2020Proposal Trimming

From Apertium
< User:Khannatanmai
Revision as of 15:22, 21 March 2020 by Khannatanmai (talk | contribs) (Created page with "== Personal Details == '''Name:''' Tanmai Khanna '''E-mail address:''' , '''IRC:''' khannatanmai '''GitHub:''' [h...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Personal Details

Name: Tanmai Khanna

E-mail address: ,

IRC: khannatanmai

GitHub: khannatanmai

LinkedIn: khannatanmai

Current Designation: Undergraduate Researcher in the LTRC Lab, IIIT Hyderabad (4th year student) and a Teaching Assistant for Linguistics courses

Time Zone: GMT+5:30

About Me

Open Source Softwares I use: I have used Apertium in the past, Ubuntu, Firefox, VLC.

Professional Interests: I’m currently studying NLP and I have a particular interest in Linguistics and NLP tools, specifically Machine Translation and its components.

Hobbies: I love Parliamentary Debating, Singing, and Reading.

What I want to get out of GSoC

I’ve enjoyed using Apertium in various personal and academic projects and it’s amazing to me that I get an opportunity to work with them.

NLP is my passion, and I would love to work with similarly passionate people at Apertium, to develop tools that people actually benefit from. This would be an invaluable experience that classes just can't match.

I am applying for GSoC, as the stipend would allow me to dedicate my full attention to the project during the 3 months.

Why is it that I am interested in Apertium and Machine Translation?

Apertium is an Open Source Rule-based MT system. I'm a researcher in the IIIT-H LTRC lab, currently working on Machine Translation and it interests me because it’s a complex problem which tries to achieve something most people believe is only achievable by humans. Translating data to other languages, and especially low- resource languages gives the speakers of those languages access to valuable data and can help in several domains, such as education, news, judiciary, etc. Machine Translation is often called NLP-Complete by my professors, i.e. it uses most of the tools NLP has to offer and hence if one learns to create good tools for MT, they learn most of Natural Language Processing.

Each part of Apertium's mission statement, especially the fact that they focus on Low Resource Languages, excites me to be working with them. While recent trends lean towards Neural Networks and Deep Learning, they fall short when it comes to resource-poor languages. Anaphora Resolution without complex linguistic information is a challenge that I'll be tackling during this Summer of Code with Apertium.

A tool which is rule-based and open source really helps the community with language pairs that are resource- poor and gives them free translations for their needs and that is why I want to work on improving on it.

I want to work with Apertium and GSoC so I can contribute to an important Open Source Tool while also honing my own skills, and I hope to become a part of this amazing community of developers!

Project Proposal

Which of the published tasks am I interested in? What do I plan to do?

Proposed Improvements

Idea Description

Working Example

Work Plan

Community Bonding Period (May 6 - May 27)

Week 1 (May 27)

Week 2 (June 3)

Week 3 (June 10)

Week 4 (June 17)

Deliverable #1:

Evaluation 1: June 24-28

Week 5 (June 28)

Week 6 (July 4)

Week 7 (July 10)

Week 8 (July 16)

Deliverable #2:

Evaluation 2: July 22-26

Week 9 (July 26)

Week 10 (August 1)

Week 11 (August 7)

Week 12 (August 13)

Final Evaluations: August 19-26

Project Completed

NOTE: Week 11 and Week 12 have extra time to deal with unforeseen issues and ideas

A description of how and who it will benefit in society

It will definitely benefit most users of Apertium and hopefully will attract more people to the tool. I’m from India and for a lot of our languages, we don’t have the data to create reliable Neural MT systems. Similarly, for all resource poor languages, Apertium provides an easy and reliable MT system for their needs. That’s how Apertium benefits society already.

Reasons why Google and Apertium should sponsor it

With this project I aim to help the users of Apertium, I wish to become a regular contributor to Apertium and become equipped to do a lot more Open Source Development in the future for other organisations as well.

By funding this project, Google will help improve an important Open Source tool and promote Open Source Development. In a world of Proprietary softwares, this is an invaluable resource for society and supports innovation that everyone can benefit from.

Skills and Qualifications

I'm currently a third year student at IIIT Hyderabad where I'm studying Computational Linguistics. It is a dual degree where we study Computer Science, Linguistics, NLP and more. I'm working on Machine Translation in the LTRC lab in IIIT Hyderabad and I'm part of the MT group in our university.

I've been interested in linguistics from the very beginning and due to the rigorous programming courses, I'm also adept at several programming languages like Python, C++, XML, Bash Scripting, etc. I'm skilled in writing Algorithms. Data Structures, and Machine Learning Algorithms as well.

I enjoy reading research papers and I have analysed several research papers in preparation for this proposal, all of which have been cited. I also have a lot of experience studying data which I feel is essential in solving any problem.

Due to the focused nature of our course, I have worked in several projects, such as building Translation Memory, Detecting Homographic Puns, POS Taggers, Grammar and Spell Checkers, Named Entity Recognisers, Building Chatbots, etc. all of which required a working understanding of Natural Language Processing. Most of these projects were done offline in my research lab and aren't available on GitHub because of the privacy settings but can be provided if needed.

I am fluent in English, Hindi and have basic knowledge of Spanish.

The details of my skills and work experience can be found here: CV

Coding Challenge

Non-Summer-Of-Code Plans