Task ideas for Google Code-in/Tokenisation for spaceless orthographies

From Apertium
Jump to navigation Jump to search

GSoC 2023 Paper Discovery

https://docs.google.com/document/d/1aTTGoLLCpr2gncq2FJIWG0InUH3tJ6epHxioKEDhNPs/edit?usp=sharing

Objective

The objective of this task is to investigate how to best tokenise sentences in South and East Asian languages into words. Sentences in these languages are usually not written with spaces to show word boundaries.

The "regular" method is Apertium, both lttoolbox and hfst, is LRLM, which isn't able to deal with spaceless (and tokenisation-ambiguous) sentences.

Example

Imagineforamomentthatenglishwerewrittenwithoutspaces.

Given a fairly complete dictionary of English words it should be possible to generate all the possible ways of splitting up the sentence into words that are found in the dictionary:

Imagine·for·a·moment·that·english·were·writ·ten·with·out·spaces
Imagine·fora·moment·that·english·were·writ·ten·with·out·spaces
Imagine·for·a·moment·that·english·were·written·with·out·spaces
Imagine·fora·moment·that·english·were·written·with·out·spaces
Imagine·for·a·moment·that·english·we·rewritten·with·out·spaces
Imagine·fora·moment·that·english·we·rewritten·with·out·spaces
Imagine·for·a·moment·that·english·were·writ·ten·without·spaces
Imagine·fora·moment·that·english·were·writ·ten·without·spaces
Imagine·for·a·moment·that·english·were·written·without·spaces
Imagine·fora·moment·that·english·were·written·without·spaces
Imagine·for·a·moment·that·english·we·rewritten·without·spaces
Imagine·fora·moment·that·english·we·rewritten·without·spaces

Prior work:

Tasks

Literature review

Search on Google for papers and programs about word segmentation / tokenisation for the language in question. Make a report about what you find.

Input/output code

The input should be a sentence, and the output should be a lattice, for example:

^Imagine/Imagine$ ^fora/fora/for+a$ ^moment/moment$ ^that/that$ ^english/english$ \
^werewritten/were+writ+ten/were+written/we+rewritten$ ^without/with+out/without$ ^spaces/spaces$

Algorithms

Longest-match left-to-right (LRLM)
Maximal matching
N-gram models

It should be possible to have for each word in the dictionary its possible parts-of-speech. Given this it should be possible to calculate n-gram co-occurrence probabilities, and use these to rank the possible segmentations.

Evaluation

Take about 3000 words of text in the language (about 6 pages) and split it into sentences. Then manually split the sentences into tokens. Compare the performance of the algorithm(s) you have implemented against the manually tokenised sentences.