Running the monolingual rule learning
Jump to navigation
Jump to search
Prerequisites:
- Install apertium-lex-tools
- Install IRSTLM (https://github.com/douglasbagnall/irstlm)
- Train a target side language model (http://hermes.fbk.eu/people/bertoldi/teaching/lab_2010-2011/img/irstlm-manual.pdf)
- The language pair must support the pretransfer and multi modes. See apertium-sh-mk/modes.xml
as a reference on how to add these modes if they do not exist. Place the following Makefile in the folder where you want to run your training process:
CORPUS=setimes DIR=sh-mk DATA=/home/philip/Apertium/apertium-sh-mk/ AUTOBIL=sh-mk.autobil.bin SCRIPTS=/home/philip/Apertium/apertium-lex-tools/scripts MODEL=/home/philip/Apertium/corpora/language-models/mk/setimes.mk.5.blm LEX_TOOLS=/home/philip/Apertium/apertium-lex-tools THR=0 #all: data/$(CORPUS).$(DIR).lrx data/$(CORPUS).$(DIR).freq.lrx all: data/$(CORPUS).$(DIR).freq.lrx.bin data/$(CORPUS).$(DIR).patterns.lrx data/$(CORPUS).$(DIR).tagger: $(CORPUS).$(DIR).txt if [ ! -d data ]; then mkdir data; fi cat $(CORPUS).$(DIR).txt | sed 's/[^\.]$$/./g' | apertium-destxt | apertium -f none -d $(DATA) $(DIR)-tagger | apertium-pretransfer > $@ data/$(CORPUS).$(DIR).ambig: data/$(CORPUS).$(DIR).tagger cat data/$(CORPUS).$(DIR).tagger | $(LEX_TOOLS)/multitrans $(DATA)$(DIR).autobil.bin -b -t > $@ data/$(CORPUS).$(DIR).multi-trimmed: data/$(CORPUS).$(DIR).tagger cat data/$(CORPUS).$(DIR).tagger | $(LEX_TOOLS)/multitrans $(DATA)$(DIR).autobil.bin -m -t > $@ data/$(CORPUS).$(DIR).ranked: data/$(CORPUS).$(DIR).tagger cat $< | $(LEX_TOOLS)/multitrans $(DATA)$(DIR).autobil.bin -m | apertium -f none -d $(DATA) $(DIR)-multi | irstlm-ranker-frac $(MODEL) > $@ data/$(CORPUS).$(DIR).annotated: data/$(CORPUS).$(DIR).multi-trimmed data/$(CORPUS).$(DIR).ranked paste data/$(CORPUS).$(DIR).multi-trimmed data/$(CORPUS).$(DIR).ranked | cut -f1-4 > $@ data/$(CORPUS).$(DIR).freq: data/$(CORPUS).$(DIR).ambig data/$(CORPUS).$(DIR).annotated python3 $(SCRIPTS)/biltrans-extract-frac-freq.py data/$(CORPUS).$(DIR).ambig data/$(CORPUS).$(DIR).annotated > $@ data/$(CORPUS).$(DIR).freq.lrx: data/$(CORPUS).$(DIR).freq python3 $(SCRIPTS)/extract-alig-lrx.py $< > $@ data/$(CORPUS).$(DIR).freq.lrx.bin: data/$(CORPUS).$(DIR).freq.lrx lrx-comp $< $@ data/$(CORPUS).$(DIR).ngrams: data/$(CORPUS).$(DIR).freq data/$(CORPUS).$(DIR).ambig data/$(CORPUS).$(DIR).annotated python3 $(SCRIPTS)/biltrans-count-patterns-ngrams.py data/$(CORPUS).$(DIR).freq data/$(CORPUS).$(DIR).ambig data/$(CORPUS).$(DIR).annotated > $@ data/$(CORPUS).$(DIR).patterns: data/$(CORPUS).$(DIR).freq data/$(CORPUS).$(DIR).ngrams python3 $(SCRIPTS)/ngram-pruning-frac.py data/$(CORPUS).$(DIR).freq data/$(CORPUS).$(DIR).ngrams > $@ data/$(CORPUS).$(DIR).patterns.lrx: data/$(CORPUS).$(DIR).patterns python3 $(SCRIPTS)/ngrams-to-rules.py $< $(THR) > $@
In the same folder also place your source side corpus file. The corpus file needs to be named as "basename"."language-pair".txt.
As an illustration, in the Makefile example, the corpus file is named setimes.sh-mk.txt.
Set the Makefile variables as follows:
- CORPUS denotes the base name of your corpus file
- DIR stands for the language pair
- DATA is the path to the language resources for the language pair
- AUTOBIL is the path to binary bilingual dictionary for the language pair
- SCRIPTS denotes the path to the lex-tools scripts
- MODEL is the path to the target side (binary) language model used for scoring the possible translations of ambiguous words
Finally, executing the Makefile will generate lexical selection rules for the specified language pair.