Apertium-apy
Apertium-APy stands for "Apertium API in Python". It's a simple apertium API server written in python, meant as a drop-in replacement for ScaleMT. It is currently found in the svn under trunk/apertium-tools/apertium-apy, where servlet.py is basically its entirety. This is meant for front ends like the simple one in trunk/apertium-tools/simple-html (where index.html is the main deal).
Contents
Installation
First, compile and install apertium/lttoolbox/apertium-lex-tools, and compile your language pairs. See Minimal_installation_from_SVN for how to do this. Then
svn co https://svn.code.sf.net/p/apertium/svn/trunk/apertium-tools/apertium-apy cd apertium-apy export APERTIUMPATH="/path/to/apertium/svn/trunk" ./servlet.py "$APERTIUMPATH"
Optional arguments include:
- --langNamesDB: path to database of localized language names
- -port --port: port to run server on (2737 by default)
- --ssl: path to SSL certificate
Usage
APY supports three types of requests: GET, POST, and JSONP. Using GET/POST are possible only if APY is running on the same server as the client due to cross-site scripting restrictions; however, JSONP requests are permitted in any context and will be useful. Using curl, APY can easily be tested: 
curl --data "lang=kaz-tat&modes=morph&q=алдым" http://localhost:2737/perWord
Note that this sends a POST request, using curl or your browser to send a GET request is also possible.
| URL | Function | Parameters | Example | 
|---|---|---|---|
| /listPairs | List available language pairs | None | $ curl http://localhost:2737/listPairs
{"responseStatus": 200, "responseData": [
 {"sourceLanguage": "kaz", "targetLanguage": "tat"}, 
 {"sourceLanguage": "tat", "targetLanguage": "kaz"}, 
 {"sourceLanguage": "mk", "targetLanguage": "en"}
], "responseDetails": null}
 | 
| /list | List available mode information | 
 | $ curl http://localhost:2737/list?q=analyzers
{"mk-en": "mk-en-morph", "en-es": "en-es-anmor", "kaz-tat": "kaz-tat-morph", 
 "tat-kaz": "tat-kaz-morph", "fin": "fin-morph", "es-en": "es-en-anmor", "kaz": "kaz-morph"}
$ curl http://localhost:2737/list?q=generators
{"en-es": "en-es-generador", "fin": "fin-gener", "es-en": "es-en-generador"}
$ curl http://localhost:2737/list?q=taggers
{"es-en": "es-en-tagger", "en-es": "en-es-tagger", "mk-en": "mk-en-tagger",
 "tat-kaz": "tat-kaz-tagger", "kaz-tat": "kaz-tat-tagger", "kaz": "kaz-tagger"}
 | 
| /translate | Translate text | 
 | $ curl 'http://localhost:2737/translate?langpair=kaz|tat&q=Сен+бардың+ба?' output | 
| /analyze | Morphologically analyze text | 
 | $ curl --data "mode=kaz&q=Сен+бардың+ба?" http://localhost:2737/analyze [["Сен/сен<v><tv><imp><p2><sg>/сен<prn><pers><p2><sg><nom>","Сен "], ["бардың ба/бар<adj><subst><gen>+ма<qst>/бар<v><iv><ifi><p2><sg>+ма<qst>","бардың ба"], ["?/?<sent>","?"],["./.<sent>",".\n"]] | 
| /generate | Generate surface forms from text | 
 | $ curl --data "mode=kaz&q=^сен<v><tv><imp><p2><sg>$" http://localhost:2737/generate [["сен","^сен<v><tv><imp><p2><sg>$ "]] | 
| /perWord | Perform morphological tasks per word | 
 | $ curl "http://localhost:2737/perWord?lang=en-es&modes=morph&q=light"
[{"analyses": ["light<n><sg>", "light<adj><sint>", "light<vblex><inf>", "light<vblex><pres>"], "input": "light"}]
$ curl "http://localhost:2737/perWord?lang=en-es&modes=tagger&q=light"
[{"analyses": ["light<adj><sint>"], "input": "light"}]
$ curl "http://localhost:2737/perWord?lang=en-es&modes=biltrans&q=light"
[{"input": "light", "translations": ["luz<n><f><sg>", 
 "ligero<adj>", "encender<vblex><inf>", "encender<vblex><pres>"]}]
$ curl "http://localhost:2737/perWord?lang=en-es&modes=translate&q=light"
[{"input": "light", "translations": ["ligero<adj>"]}]
$ curl "http://localhost:2737/perWord?lang=en-es&modes=biltrans+morph&q=light"
[{"analyses": ["light<n><sg>", "light<adj><sint>", "light<vblex><inf>", "light<vblex><pres>"],
 "input": "light", "translations": ["luz<n><f><sg>", "ligero<adj>", "encender<vblex><inf>",
 "encender<vblex><pres>"]}]
$ curl "http://localhost:2737/perWord?lang=en-es&modes=translate+tagger&q=light"
[{"analyses": ["light<adj><sint>"], "input": "light", "translations": ["ligero<adj>"]}]
$ curl "http://localhost:2737/perWord?lang=en-es&modes=morph+tagger&q=light"
[{"ambiguousAnalyses": ["light<n><sg>", "light<adj><sint>", "light<vblex><inf>", "light<vblex><pres>"], 
"input": "light", "disambiguatedAnalyses": ["light<adj><sint>"]}]
 | 
Threading
Currently it uses TCPServer inheriting ThreadingMixIn. A lock on translateNULFlush (which has to have at most one thread per pipeline) ensures that part stays single-threaded (to avoid Alice getting Bob's text).
Try it out
Try testing with e.g.
export APERTIUMPATH="/path/to/svn/trunk" python3 servlet "$APERTIUMPATH" 2737 & curl -s --data-urlencode 'langpair=nb|nn' --data-urlencode \ 'q@/tmp/reallybigfile' 'http://localhost:2737/translate' >/tmp/output & curl 'http://localhost:2737/translate?langpair=nb%7Cnn&q=men+ikke+den' curl 'http://localhost:2737/translate?langpair=nb%7Cnn&q=men+ikke+den' curl 'http://localhost:2737/translate?langpair=nb%7Cnn&q=men+ikke+den'
And see how the last three (after a slight wait) start outputting before the first request is done.
Morphological Analysis and Generation
To analyze text, send a POST or GET request to /analyze with parameters mode and q set. For example: 
$ curl --data "mode=kaz&q=Сен+бардың+ба?" http://localhost:2737/analyze [["Сен/сен<v><tv><imp><p2><sg>/сен<prn><pers><p2><sg><nom>","Сен "],["бардың ба/бар<adj><subst><gen>+ма<qst>/бар<v><iv><ifi><p2><sg>+ма<qst>","бардың ба"],["?/?<sent>","?"],["./.<sent>",".\n"]]
The JSON response will consist of a list of lists each of form [analysis with following non-analyzed text*, original input token]. To receive a list of valid analyzer modes, send a request to /listAnalyzers.
To generate surface forms from an analysis, send a POST or GET request to /generate with parameters mode and q set. For example: 
$ curl --data "mode=kaz&q=^сен<v><tv><imp><p2><sg>$+^сен<v><tv><imp><p2><pl>$" http://localhost:2737/generate [["сен ","^сен<v><tv><imp><p2><sg>$ "],["сеніңдер","^сен<v><tv><imp><p2><pl>$"]]
The JSON response will consist of a list of lists each of form [generated form with following non-analyzed text*, original lexical unit input]. To receive a list of valid generator modes, send a request to /listGenerators.
* e.g. whitespace, superblanks
SSL
To test with a self-signed signature:
openssl req -new -x509 -keyout server.pem -out server.pem -days 365 -nodes
Then run with --ssl server.pem, and test with https and the -k argument to curl (-k means curl accepts self-signed or even slightly "lying" signatures):
curl -k --data "mode=kaz-tat&q=Сен+бардың+ба?" https://localhost:2737/analyze
If you have a signed signature for e.g. apache, it's likely to be split into two files, one .key and one .crt. You can cat them together into one to use with servlet.py:
cat server.key server.crt > server.keycrt
Now you should be able to use curl without -k for the domain which the certificate is signed for:
curl --data "mode=kaz-tat&q=Сен+бардың+ба?" https://oohlookatmeimencrypted.com:2737/analyze
Remember to open port 2737 to your server.
TODO
- It should be possible to set a time-out for translation threads, so if a translation is taking too long, it gets killed and the queue moves along.
- It should use one lock per pipeline, since we don't need to wait for mk-en just because sme-nob is running.
- http://stackoverflow.com/a/487281/69663 recommends select/polling over threading (http://docs.python.org/3.3/library/socketserver.html for more on the differences) but requires either lots of manually written dispatching code (http://pymotw.com/2/select/) or a framework like Twisted.
- some language pairs still don't work (sme-nob?)
- hfst-proc -g doesn't work with null-flushing (or?)

