Talk:Ideas for Google Summer of Code
So, was your organization a part of the google summer of code last year too?
- Nope, but we're hoping to be included this year -- Francis Tyers 02:45, 16 March 2008 (UTC)
From old Projects page
Writing extensions to Apertium could be the ideal undergraduate (major) project. Here are some suggestions, along with brief outlines for how you might go about starting it.
A word compounder for Germanic languages
Most Germanic languages have compound words, we can analyse the compounds using LRLM (see Agglutination and compounds), but we cannot generate them without having them in the dictionary (a laborious task). The idea of this project it to create a post-generation module that takes series of words, e.g. in Afrikaans:
vlote bestorming fase naval assault phase
and turn them into compounds:
vlootbestormingfase naval+assault+phase
We don't want to compound all words, but it might be a good idea to compound those which have been seen before . There are many large wordlists of compound words that could be used for this. Of course if they aren't found maybe some kind of heuristics could be used. Probably we'd only want to compound where words are >= 5 characters long.
Automatic accent and diacritic insertion
One of the problems in machine translating text in real time chat environments (and generally) is the lack of accents or diacritic marks. This makes machine translation hard, because without the (´), traducción is an unknown word.
There is a need for a module for Apertium which would automatically replace the accents/diacritics on unaccented/diacritic'd words.
- References
- Simard, Michel (1998). "Automatic Insertion of Accents in French Texts". Proceedings of EMNLP-3. Granada, Spain.
- Rada F. Mihalcea. (2002). "Diacritics Restoration: Learning from Letters versus Learning from Words". Lecture Notes in Computer Science 2276/2002 pp. 96--113
Old ideas
Task | Difficulty | Description | Rationale | Requirements | Interested mentors |
---|---|---|---|---|---|
Porting read more... | 4. Entry level | Port Apertium to Windows complete with nice installers and all that jazz. Apertium currently compiles on Windows (see Apertium on Windows) | While we all might use GNU/Linux, there are a lot of people out there who don't, some of them use Microsoft's Windows. It would be nice for these people to be able use Apertium too. | C++, autotools, experience in programming on Windows. | |
Tree-based transfer read more... | 1. Very hard | Create a new XML-based transfer language for tree-based transfer and a prototype implementation, and transfer rules for an existing language pair. | Apertium currently works on finite-state chunking, which works well, but is problematic for less-closely related languages and for getting the final few percent in closely-related languages. A tree-based transfer would allow us to work on real syntactic constituents, and probably simplify many existing pairs. There are some existing non-free implementations.[1] [2] | XML, Knowledge of parsing, implementation language largely free. | |
Interfaces | 4. Entry level | Create plugins or extensions for popular free software applications to include support for translation using Apertium. We'd expect at least Firefox and Evolution (or Thunderbird), but to start with something more easy we have half-finished plugins for Pidgin and XChat that could use some love. The more the better! Further ideas on plugins page | Apertium currently runs as a stand alone translator. It would be great if it was integrated in other free software applications. For example so instead of copy/pasting text out of your email, you could just click a button and have it translated in place. This should use a local installation with optional fallback to the webservice. | Depends on the application chosen, but probably Java, C, C++, Python or Perl. | |
Automated lexical extraction |
2. Hard | Writing a C++ wrapper around Markus Forsberg's Extract tool (version 2.0) as a library to allow it to be used with Apertium paradigms and TSX files / Constraint grammars as input into its paradigms and constraints. | One of the things that takes a lot of time when creating a new language pair is constructing the monodices. The extract tool can greatly reduce the time this takes by matching lemmas to paradigms based on distribution in a corpus. | Haskell, C++, XML | |
Bytecode for transfer | 2. Hard | Adapt transfer to use bytecode instead of tree walking. | Apertium is pretty fast, but it could be faster, and the transfer is dominating the CPU usage. This task would be write a compiler and interpreter for Apertium transfer rules into the format of an an off-the-shelf bytecode engine (e.g. Java, v8, kjs, ...). If Java bytecode was chosen this might eventually make Apertium run on J2ME devices. See also: Bytecode for transfer | C++ and for the bytecode Java or Javascript |
Old further reading
- Accent and diacritic restoration
- Simard, Michel (1998). "Automatic Insertion of Accents in French Texts". Proceedings of EMNLP-3. Granada, Spain.
- Rada F. Mihalcea. (2002). "Diacritics Restoration: Learning from Letters versus Learning from Words". Lecture Notes in Computer Science 2276/2002 pp. 96--113
- G. De Pauw, P. W. Wagacha; G.M. de Schryver (2007) "Automatic diacritic restoration for resource-scarce languages". Proceedings of Text, Speech and Dialogue, Tenth International Conference. pp. 170--179
- P.W. Wagacha; G. De Pauw; P.W. Githinji (2006) "A grapheme-based approach to accent restoration in Gĩkũyũ". Proceedings of the Fifth International Conference on Language Resources and Evaluation
- D. Yarowsky (1994) "A Comparison Of Corpus-Based Techniques For Restoring Accents In Spanish And French Text". Proceedings, 2nd annual workshop on very large corpora. pp. 19--32
- K. Scannell (2010) "Statistical Unicodification of African Languages". Submitted for publication.
- Automated lexical extraction
- M. Forsberg H. Hammarström A. Ranta. "Morphological Lexicon Extraction from Raw Text Data". FinTAL 2006, LNAI 4139, pp. 488--499.
- Support for agglutinative languages
- Beesley, K. R and Karttunen, L. (2000) "Finite-State Non-Concatenative Morphotactics". SIGPHON-2000, Proceedings of the Fifth Workshop of the ACLSpecial Interest Group in Computational Phonology, pp. 1--12,