Difference between revisions of "User:Francis Tyers/Perceptron"
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
==Learning algorithm== |
==Learning algorithm== |
||
==Example== |
==Example== |
||
Line 85: | Line 87: | ||
{|class=wikitable |
{|class=wikitable |
||
! <math>w_1</math> !! <math>w_2</math> !! |
|||
⚫ | |||
|- |
|||
⚫ | |||
|- |
|- |
||
| 0.0 || 0.0 || 0.0 || 0.0 || 0.0 || 0.0 || 0.0 |
| 0.0 || 0.0 || 0.0 || 0.0 || 0.0 || 0.0 || 0.0 |
||
|} |
|} |
||
===Trace=== |
Revision as of 21:56, 8 November 2014
A perceptron is a classifier that
The classifier consists of:
- Binary features
- Weights
Learning algorithm
Example
Here is a worked example of a perceptron applied to the task of lexical selection. Lexical selection is the task of choosing a target translation for a given source word in a context out of a set of possible translations . A perceptron makes a classification decision for a single class, so we need to train a separate perceptron for each possible target word selection.
In the example,
- = estació
- = {season, station}
- = season
Features
The features we will be working with are ngram contexts around the "problem word". These can be extracted from the word alignments calculated from a parallel corpus.
Catalan | English |
---|---|
Durant l' estació seca les pluges són escasses. | During the dry season it rains infrequently. |
L' estiu és una estació de l' any. | Summer of one of the seasons of the year. |
Barcelona-Sants és una estació de tren a Barcelona. | Barcelona-Sants is a train station in Barcelona. |
... |
Training data
- s = estació, t* = season
_ sec |
1 |
_ de el any |
1 |
_ de tren |
0 |
_ de el línia |
0 |
_ humit |
1 |
_ plujós |
1 |
un _ a |
0 |
Feature vector
This is the above training data expressed as an input vector to the perceptron.
_ sec | _ de el any | _ de tren | _ de la línia | _ humit | _ plujós | un _ a | ||
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Weight vector
_ sec | _ de el any | _ de tren | _ de la línia | _ humit | _ plujós | un _ a |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |