Difference between revisions of "UDPipe"
Line 168: | Line 168: | ||
Now try it on your own data. |
Now try it on your own data. |
||
==Using the CoNLL evaluation script== |
|||
Open this link: http://universaldependencies.org/conll17/evaluation.html |
|||
Then download the evaluation script [http://universaldependencies.org/conll17/eval.zip here]. |
|||
Use the evaluation script like this: |
|||
<pre> |
|||
$ python3 evaluation_script/conll17_ud_eval.py gold_treebank.conllu system_output.conllu |
|||
</pre> |
|||
==More ideas== |
==More ideas== |
Revision as of 07:19, 24 November 2017
Contents
First things first
This section describes how to set up and train/test UDPipe. If you've already done this, then you can move on to the next part.
- Get the code!
git clone https://github.com/ufal/udpipe cd udpipe/src make
Now copy the udpipe/src/udpipe
binary executable to somewhere in your $PATH
.
- Get some data!
git clone https://github.com/UniversalDependencies/UD_Norwegian-Bokmaal cd UD_Norwegian-Bokmaal
- Train a default model
With tokeniser and tagger:
cat no_bokmaal-ud-train.conllu | udpipe --train nob.udpipe
Without tokeniser and tagger:
cat no_bokmaal-ud-train.conllu | udpipe --tokenizer none --tagger none --train nob.udpipe
- Parse some input
With gold standard POS tags:
cat no_bokmaal-ud-dev.conllu |cut -f1-6 | sed 's/$/\t_\t_\t_\t_/g' | sed 's/^\t.*//g'| udpipe --parse nob.udpipe > output
Full pipeline:
echo "Det ligger en bok på bordet." | udpipe --tokenize --tag --parse nob.udpipe
- Calculate accuracy
udpipe --accuracy --parse nob.udpipe no_bokmaal-ud-dev.conllu
- Get more stuff!
You'll need also need a couple of scripts from https://github.com/ftyers/ud-scripts
git clone https://github.com/ftyers/ud-scripts.git
Parameters
For playing with the parameters we're going to try a smaller treebank:
git clone https://github.com/UniversalDependencies/UD_Turkish cd UD_Turkish
The Turkish UD treebank has a fairly high number of non-projective dependencies, in the order of 15%, so it makes a good test case for testing different options.
Default parsing options
First of all try training the parser with the default options. These are:
- Parsing algorithm is
projective
- Number of training iterations is 10
- Hidden layer size is 200
udpipe --tokenizer none --tagger none --train tur.proj.udpipe < UD_Turkish/tr-ud-train.conllu
You can also download a pretrained model for Turkish trained using the default parsing options here:
Using the swap
algorithm
If we want to support parsing non-projective trees we can use the swap
algorithm:
udpipe --tokenizer none --tagger none --parser "transition_system=swap" --train tur.swap.udpipe < tr-ud-train.conllu
(This will take around 15 minutes)
If you want to see how many trees are non-projective before and after, you can use the script: conllu-extract-non-projective.py
python3 conllu-extract-non-projective.py < tr-ud-train.conllu.conllu > tr-ud-train.nonproj.conllu
Using external embeddings
For calculating the word embeddings we'll use word2vec
. UDPipe can directly use this kind of embedding file.
- Compile word2vec
git clone https://github.com/dav/word2vec.git cd word2vec/src make
Now copy the word2vec binaries somewhere in your $PATH.
- Get a corpus and tokenise
wget http://opus.lingfil.uu.se/download.php?f=SETIMES2/en-tr.txt.zip -O en-tr.txt.zip unzip en-tr.txt.zip cat SETIMES2.en-tr.tr | sed 's/[\[,;:!\]?"“”(){}]/ & /g' | sed 's/ */ /g' > tur-tok.crp.txt
- Train word2vec
word2vec -train tur-tok.crp.txt -output tur.vec -cbow 0 -size 50 -window 10 -negative 5 -hs 0 -sample 1e-1 \ -threads 12 -binary 0 -iter 15 -min-count 2
These are the settings suggested by the UDpipe documentation. It shouldn't take more than 4—5 minutes to train.
- Now use the embeddings with UDpipe
udpipe --tokenizer none --tagger none --parser "embedding_form_file=tur.vec" --train tur.embeds.udpipe < tr-ud-train.conllu
Classifier settings
- Increase the size of the hidden layer
udpipe --tokenizer none --tagger none --parser "hidden_layer=300" --train tur.h300.udpipe < tr-ud-train.conllu
The default size is 200, try increasing it to 300, or decreasing it to 100 and see what happens.
- Train for a different number of iterations/epochs
udpipe --tokenizer none --tagger none --parser "iterations=5" --train tur.iter5.udpipe < tr-ud-train.conllu
The default is 10, try some numbers in the range of [1, 15]
Parser combination
- Prerequisites
The important scripts for this section are:
conllu-voting.py
: Runs Chu-Liu-Edmonds over a weighted graph assembled from CoNLL-U filesconllu-eval.py
: Calculates LAS and UAS.
- Spanning tree algorithm
python3 conllu-voting.py samples/example.1.0.conllu samples/example.1.1.conllu samples/example.1.2.conllu samples/example.1.3.conllu
Now try it on your own data.
Using the CoNLL evaluation script
Open this link: http://universaldependencies.org/conll17/evaluation.html
Then download the evaluation script here.
Use the evaluation script like this:
$ python3 evaluation_script/conll17_ud_eval.py gold_treebank.conllu system_output.conllu
More ideas
- Try training only on projective data. You can use the script
conllu-extract-projective.py
to make a subset of your treebank that only has projective trees. - Download a treebank of a language you are interested in, and find out what percentage of trees are non-projective.
- Find a bug in one of the scripts and report it on Github.
- Describe an alternative weighting method for parser combination, could better results be had with learnt weights ?