Difference between revisions of "Apertium stream format"
(cl-apertium-stream) |
|||
(10 intermediate revisions by 3 users not shown) | |||
Line 17: | Line 17: | ||
===Special=== |
===Special=== |
||
The following have special meaning at the start of an analysis: |
|||
* Asterisk, '<code><nowiki>*</nowiki></code>' -- Unanalysed word. |
* Asterisk, '<code><nowiki>*</nowiki></code>' -- Unanalysed word. |
||
* At sign, '<code><nowiki>@</nowiki></code>' -- Untranslated [[lemma]]. |
* At sign, '<code><nowiki>@</nowiki></code>' -- Untranslated [[lemma]]. |
||
* Hash sign, '<code><nowiki>#</nowiki></code>' |
* Hash sign, '<code><nowiki>#</nowiki></code>' |
||
** In morphological generation -- Unable to generate [[surface form]] from [[lexical unit]] |
** In morphological generation -- Unable to generate [[surface form]] from [[lexical unit]] (escape this to use # in lemmas) |
||
** In morphological analysis -- Start of invariable part of multiword marker |
** In morphological analysis -- Start of invariable part of multiword marker (escape this to use # in lemmas) |
||
* Plus symbol, '<code><nowiki>+</nowiki></code>' -- Joined lexical units |
* Plus symbol, '<code><nowiki>+</nowiki></code>' -- [[Conjoined lexical units|Joined lexical units]] (escape this to use + in lemmas) |
||
* Tilde '<code><nowiki>~</nowiki></code>' -- Word needs treating by [[post-generator]] |
* Tilde '<code><nowiki>~</nowiki></code>' -- Word needs treating by [[post-generator]] |
||
==Python parsing library== |
==Python parsing library== |
||
Line 31: | Line 33: | ||
<pre> |
<pre> |
||
from streamparser import parse_file, mainpos, reading_to_string |
|||
for blank, lu in parse_file(file, with_text=True): |
|||
analyses = lu.readings |
analyses = lu.readings |
||
firstreading = analyses[0] |
|||
surfaceform = lu.wordform |
surfaceform = lu.wordform |
||
# rewrite to print only the first reading (and surface/word form): |
|||
print("^{}/{}$".format(surfaceform, |
|||
reading_to_string(firstreading))) |
|||
# convenience function to grab the first part of speech of the first reading: |
|||
mainpos = mainpos(lu) |
|||
</pre> |
</pre> |
||
etc. without having to worry about superblanks and escaped characters and such :-) |
etc. without having to worry about superblanks and escaped characters and such :-) |
||
Here's an example used in testvoc, this one splits ambiguous readings like <code><nowiki>^foo/bar<n>/fie<ij>$</nowiki></code> into <code><nowiki>^foo/bar<n>$ ^foo/fie<ij>$</nowiki></code>, keeping the (super)blanks and newlines in between unchanged: |
|||
<pre> |
|||
from streamparser import parse_file, reading_to_string |
|||
import sys |
|||
for blank, lu in parse_file(sys.stdin, with_text=True): |
|||
print(blank+" ".join("^{}/{}$".format(lu.wordform, reading_to_string(r)) |
|||
for r in lu.readings), |
|||
end="") |
|||
</pre> |
|||
Here's a one-liner to print the lemmas of each word: |
|||
<pre> |
|||
$ echo fisk bank kake|lt-proc nno-nob.automorf.bin|python3 -c 'import sys, streamparser; print ("\n".join("\t".join(set(s.baseform for r in lu.readings for s in r)) for lu in streamparser.parse_file(sys.stdin)))' |
|||
</pre> |
|||
An alternative python lib: https://github.com/krvoje/apertium-transfer-dsl/blob/master/apertium/stream_entities.py https://github.com/krvoje/apertium-transfer-dsl/blob/master/apertium/stream_reader.py |
|||
==Common Lisp parsing library== |
|||
cl-apertium-stream[https://github.com/veer66/cl-apertium-stream] is a library written in Common Lisp for parsing Apertium stream and generating Apertium stream from parsed data. It is developed based on the discontinued Ruby library[https://github.com/veer66/reinarb]. cl-apertium-stream is data-driven. Its parsed data is a list, keyword, and string combination without any new type/class. So further processing is based on ordinary list operations. cl-apertium-stream handles Apertium stream format by declarative Esrap[https://github.com/scymtym/esrap] rules. |
|||
==Formatted input== |
==Formatted input== |
Latest revision as of 07:12, 29 March 2022
This page describes the stream format used in the Apertium machine translation platform.
Characters[edit]
Reserved[edit]
Reserved characters should only appear escaped in the input stream unless they are part of a lexical unit, chunk or superblank.
- The characters
^
and$
are reserved for delimiting lexical units - The character
/
is reserved for delimiting analyses in ambiguous lexical units - The characters
<
and>
are reserved for encapsulating tags - The characters
{
and}
are reserved for delimiting chunks - The character
\
is the escape character
Special[edit]
The following have special meaning at the start of an analysis:
- Asterisk, '
*
' -- Unanalysed word. - At sign, '
@
' -- Untranslated lemma. - Hash sign, '
#
'- In morphological generation -- Unable to generate surface form from lexical unit (escape this to use # in lemmas)
- In morphological analysis -- Start of invariable part of multiword marker (escape this to use # in lemmas)
- Plus symbol, '
+
' -- Joined lexical units (escape this to use + in lemmas) - Tilde '
~
' -- Word needs treating by post-generator
Python parsing library[edit]
If you're writing a python script that needs to handle the Apertium stream format, try the excellent https://github.com/apertium/streamparser which lets you do
from streamparser import parse_file, mainpos, reading_to_string for blank, lu in parse_file(file, with_text=True): analyses = lu.readings firstreading = analyses[0] surfaceform = lu.wordform # rewrite to print only the first reading (and surface/word form): print("^{}/{}$".format(surfaceform, reading_to_string(firstreading))) # convenience function to grab the first part of speech of the first reading: mainpos = mainpos(lu)
etc. without having to worry about superblanks and escaped characters and such :-)
Here's an example used in testvoc, this one splits ambiguous readings like ^foo/bar<n>/fie<ij>$
into ^foo/bar<n>$ ^foo/fie<ij>$
, keeping the (super)blanks and newlines in between unchanged:
from streamparser import parse_file, reading_to_string import sys for blank, lu in parse_file(sys.stdin, with_text=True): print(blank+" ".join("^{}/{}$".format(lu.wordform, reading_to_string(r)) for r in lu.readings), end="")
Here's a one-liner to print the lemmas of each word:
$ echo fisk bank kake|lt-proc nno-nob.automorf.bin|python3 -c 'import sys, streamparser; print ("\n".join("\t".join(set(s.baseform for r in lu.readings for s in r)) for lu in streamparser.parse_file(sys.stdin)))'
An alternative python lib: https://github.com/krvoje/apertium-transfer-dsl/blob/master/apertium/stream_entities.py https://github.com/krvoje/apertium-transfer-dsl/blob/master/apertium/stream_reader.py
Common Lisp parsing library[edit]
cl-apertium-stream[1] is a library written in Common Lisp for parsing Apertium stream and generating Apertium stream from parsed data. It is developed based on the discontinued Ruby library[2]. cl-apertium-stream is data-driven. Its parsed data is a list, keyword, and string combination without any new type/class. So further processing is based on ordinary list operations. cl-apertium-stream handles Apertium stream format by declarative Esrap[3] rules.
Formatted input[edit]
- See also: Format handling
F = formatted text, T = text to be analysed.
Formatted text is treated as a single whitespace by all stages.
[<em>]this is[<\/em> ]a[ <b>]test.[][<\/b>] |____| |_______| |____| |_______| | | | | F F F F [<em>]this is[<\/em> ]a[ <b>]test.[][<\/b>] |______| | |____| | | | T T T
Analyses[edit]
S = surface form, L = lemma.
^vino/vino<n><m><sg>/venir<vblex><ifi><p3><sg>$ | | |________| S L TAGS |______| ANALISIS |_____________________________________________| AMBIGUOUS LEXICAL UNIT ^vino<n><m><sg>$ |______________| DISAMBIGUATED LEXICAL UNIT ^dímelo/decir<vblex><imp><p2><sg>+me<prn><enc><p1><mf><sg>+lo<prn><enc><p3><nt>/decir<vblex><imp><p2><sg>+me<prn><enc><p1><mf><sg>+lo<prn><enc><p3><m><sg>$ |____________________________________________| JOINED MORPHEMES ^take it away/take<vblex><sep><inf>+prpers<prn><obj><p3><nt><sg># away/take<vblex><sep><pres>+prpers<prn><obj><p3><nt><sg># away$ |___| |_____| | | LEMMA HEAD LEMMA QUEUE
Chunks[edit]
- See also: Chunking
^Verbcj<SV><vblex><ifi><p3><sg>{^come<vblex><ifi><p3><sg>$}$ ^pr<PREP>{^to<pr>$}$ ^det_nom<SN><f><sg>{^the<det><def><3>$ ^beach<n><3>$}$ | |______________________||__________________________| | CHUNK CHUNK TAGS LEXICAL UNITS IN LINKED NAME THE CHUNK TAG |________________________________________| | CHUNK ^det_nom<SN><f><sg>{^the<det><def><3>$ ^beach<n><3>$}$ |______________| | POINTERS TO CHUNK TAGS <1> <2> <3>
See also[edit]
- List of symbols
- Meaning of symbols * @ and dieze after a translation
- apertium-cleanstream which lets you avoid ad-hoc bash oneliners to get one word per line