Difference between revisions of "Training Tesseract"
m (→Clustering) |
|||
Line 57: | Line 57: | ||
<code> cntraining tyv.*.exp0.tr </code> |
<code> cntraining tyv.*.exp0.tr </code> |
||
And prefix <code> normproto, pffmtable, inttemp </code> with <code> tyv. </code> |
|||
=== DAWG files === |
=== DAWG files === |
Revision as of 21:14, 30 December 2015
Contents
Creating Training Text
To train tesseract, first create some training text. Make sure the text is not too long, because this will make training take forever, but make sure it includes around at least 10 of each character you want the language trained on.
Creating Training Images
Tesseract has an option to generate images from text doing training. To do this, run:
text2image --text=training_text.txt --outputbase=[lang_code].[fontname].exp0 --font='Font Name' --fonts_dir=/path/to/your/fonts
On Ubuntu, fonts are usually at /usr/share/fonts
, but this path is platform specific. If you are training on multiple fonts, you will have to run this command multiple times. For the purposes of text2image, italics are considered a different font (you will have to run it once for Times, and once for Times Italic, for example)
For example, if you are training for Tuvan with Times New Roman:
text2image --text=training_text.txt --outputbase=tyv.TimesNewRoman.exp0 --font='Times New Roman' --fonts_dir=/usr/share/fonts
Training
Generating .tr files
The first step in training is generating tr files from the images you created. Do this by running:
tesseract [lang_code].[fontname].exp0.tif [lang_code].[fontname].exp0 box.train
You will have to run this command for each font. For Tuvan and Times New roman:
tesseract tyv.TimesNewRoman.exp0.tif tyv.TimesNewRoman.exp0 box.train
Character set
To get the charset, run:
unicharset_extractor [lang].*.exp0.box
This gets all the box files, so you can run that command verbatim for all fonts.
For Tuvan:
unicharset_extractor tyv.*.exp0.box
Fontproperties file
You must specify a font_properties file, with each line a font in the following format:
<fontname> <italic> <bold> <fixed> <serif> <fraktur>
Clustering
Run the following 3 commands:
shapeclustering -F font_properties -U unicharset [lang].*.exp0.tr
(only for indic languages)
mftraining -F font_properties -U unicharset -O [lang].unicharset [lang].*.exp0.tr
cntraining [lang].*.exp0.tr
Rename the files normproto, pffmtable, inttemp
to be prefixed with <lang_code>.
For Tuvan:
mftraining -F font_properties -U unicharset -O lang.unicharset tyv.*.exp0.tr
cntraining tyv.*.exp0.tr
And prefix normproto, pffmtable, inttemp
with tyv.
DAWG files
It is recommended that you have a list of word bigrams (line separated) and a wordlist (also line separated, but not necessarily complete). Run:
wordlist2dawg wordlist lang.word-dawg lang.unicharset
wordlist2dawg bigram_list lang.bigram-dawg lang.unicharset
Final steps
Run combine_tessdata lang_code.
to get the final .traineddata
file.