Difference between revisions of "Constraint-based lexical selection module"
Line 190: | Line 190: | ||
</select> |
</select> |
||
</rule> |
</rule> |
||
</pre> |
|||
===Compiled=== |
|||
The general structure is as follows: |
|||
<pre> |
|||
LSSRECORD = id, len, weight; |
|||
<ALPHABET> |
|||
<NUM_TRANSDUCERS> |
|||
<TRANSDUCER> |
|||
<TRANSDUCER> |
|||
<TRANSDUCER> |
|||
... |
|||
"main" |
|||
<TRANSDUCER> |
|||
<LSRRECORD> |
|||
<LSRRECORD> |
|||
<LSRRECORD> |
|||
</pre> |
</pre> |
||
Revision as of 10:22, 21 November 2011
Lexical transfer
This is the output of lt-proc -b
on an ambiguous bilingual dictionary.
[74306] ^El<det><def><f><sg>/The<det><def><f><sg>$ ^estació<n><f><sg>/season<n><sg>/station<n><sg>$ ^més<preadv>/more<preadv>$ ^plujós<adj><f><sg>/rainy<adj><sint><f><sg>$ ^ser<vbser><pri><p3><sg>/be<vbser><pri><p3><sg>$ ^el<det><def><f><sg>/the<det><def><f><sg>$ ^tardor<n><f><sg>/autumn<n><sg>/fall<n><sg>$^,<cm>/,<cm>$ ^i<cnjcoo>/and<cnjcoo>$ ^el<det><def><f><sg>/the<det><def><f><sg>$ ^més<preadv>/more<preadv>$ ^sec<adj><f><sg>/dry<adj><sint><f><sg>$ ^el<det><def><m><sg>/the<det><def><m><sg>$ ^estiu<n><m><sg>/summer<n><sg>$^.<sent>/.<sent>$
The module requires VM for transfer, or another apertium transfer implementation without lexical transfer in order to work.
Rule format
A rule is made up of:
- An action (select, remove)
- A "centre" (the source language token that will be treated)
- A target language pattern on which the action takes place
- A source language context
Text
s ("estació" n) ("season" n) (1 "plujós") s ("estació" n) ("season" n) (2 "plujós") s ("estació" n) ("season" n) (1 "de") (3 "any") s ("estació" n) ("station" n) (1 "de") (3 "Línia") s ("prova" n) ("evidence" n) (1 "arqueològic") s ("prova" n) ("test" n) (1 "estadístic") s ("prova" n) ("event" n) (-3 "guanyador") (-2 "de") s ("prova" n) ("testing" n) (-2 "tècnica") (-1 "de") s ("joc" n) ("game" n) (1 "olímpic") s ("joc" n) ("set" n) (1 "de") (2 "caràcter") r ("pista" n) ("hint" n) (1 "més") (2 "llarg") r ("pista" n) ("clue" n) (1 "més") (2 "llarg") r ("motiu" n) ("motif" n) (-1 "aquest") (-2 "per") s ("carn" n) ("flesh" n) (1 "i") (2 "os") s ("sobre" pr) ("over" n) (-1 "victòria") s ("dona" n) ("wife" n) (-1 "*" det pos) s ("dona" n) ("wife" n) (-1 "el") (1 "de") s ("dona" n) ("woman" n) (1 "de") (2 "*" det pos) (3 "somni") r ("patró n) ("pattern" n) (1 "*" np ant)
Usage
$ cat /tmp/test | python apertium-lex-rules.py rules.txt 2>/dev/null ^El<det><def><f><sg>/The<det><def><f><sg>$ ^estació<n><f><sg>/season<n><sg>$ ^més<preadv>/more<preadv>$ ^plujós<adj><f><sg>/rainy<adj><sint><f><sg>$ ^ser<vbser><pri><p3><sg>/be<vbser><pri><p3><sg>$ ^el<det><def><f><sg>/the<det><def><f><sg>$ ^tardor<n><f><sg>/autumn<n><sg>/fall<n><sg>$^,<cm>/,<cm>$ ^i<cnjcoo>/and<cnjcoo>$ ^el<det><def><f><sg>/the<det><def><f><sg>$ ^més<preadv>/more<preadv>$ ^sec<adj><f><sg>/dry<adj><sint><f><sg>$ ^el<det><def><m><sg>/the<det><def><m><sg>$ ^estiu<n><m><sg>/summer<n><sg>$ ^.<sent>/.<sent>$
- With rules
$ cat /tmp/test | python apertium-lex-rules.py rules.txt | apertium-vm -c ca-en.t1x.vmb | apertium-vm -c ca-en.t2x.vmb |\ apertium-vm -c ca-en.t3x.vmb | lt-proc -g ca-en.autogen.bin The rainiest season is the autumn, and the driest the summer.
- With bilingual dictionary defaults
$ cat /tmp/test | apertium-lex-defaults ca-en.autoldx.bin | apertium-vm -c ca-en.t1x.vmb | apertium-vm -c ca-en.t2x.vmb |\ apertium-vm -c ca-en.t3x.vmb | lt-proc -g ca-en.autogen.bin The rainiest station is the autumn, and the driest the summer.
XML
Rule application process
The following is an inefficient implementation of the rule application process:
# s ("prova" n) ("event" n) (-3 "guanyador") (-2 "de") # # tipus = "select"; # centre = "^prova<n>.*" # tl_patro = ["^event<n>.*"] # sl_patro = {-3: "^guanyador<", -2: "^de<"} CLASS Rule: tipus = enum('select', 'remove') centre = ''; tl_patro = []; sl_patro = {}; rule_table = {}; # e.g. rule_table["estació"] = [rule1, rule2, rule3]; i = 0 DEFINE ApplyRule(rule, lu): FOREACH target IN lu.tl: SWITCH rule.tipus: 'select': IF target NOT IN rule.tl_patro: DELETE target 'remove': IF target IN rule.tl_patro: DELETE target FOREACH pair(sl, tl) IN sentence: FOREACH centre IN rule_table: IF centre IN sl: FOREACH rule IN rule_table[centre]: matched = False FOREACH context_item IN rule_table[centre][rule]: IF context_item in sentence: matched = True ELSE: matched = False # If all of the context items have matched, and none of them have not matched # if a rule matches break and continue to the pair. IF matched == True: sentence[i] = ApplyRule(rule_table[centre][rule], sentence[i]) break i = i + 1
- Optimal application
We're interested in the longest match, but not left to right, so what we do is make an automata of the rule contexts (one rule is one transducer, then we compose them), and we read through them, each state is an LU, It needs to be non-deterministic, and you keep a log of alive paths/states, but also their "weight" (how many transitions have been made) -- the longest for each of the ambiguous words is the winner when we get to the end of the sentence.
Writing and generating rules
Writing
A good way to start writing lexical selection rules is to take a corpus, and search for the problem word, you can then look at how the word should be translated, and the contexts it appears in.
Generating
Rule formats
<rule> <skip lemma="el"/> <select lemma="dona" tags="n.*"> <acception lemma="wife"/> </select> <skip lemma="de"/> </rule> <rule> <skip lemma="guanyador"/> <skip lemma="de"/> <skip/> <select lemma="prova" tags="n.*"> <acception lemma="event"/> </select> </rule>
Compiled
The general structure is as follows:
LSSRECORD = id, len, weight; <ALPHABET> <NUM_TRANSDUCERS> <TRANSDUCER> <TRANSDUCER> <TRANSDUCER> ... "main" <TRANSDUCER> <LSRRECORD> <LSRRECORD> <LSRRECORD>
Todo
- xml compiler
- optimal coverage
- compile rule operation patterns, as well as matching patterns